نتایج جستجو برای: for forecasting river flow process

تعداد نتایج: 10890387  

1999
D. Nagesh Kumar T. Sathish

Forecasting a hydrologic time series has been one of the most complicated tasks owing to the wide range of data, the uncertainties in the parameters influencing the time series and also due to the non availability of adequate data. Recently Artificial Neural Networks (ANN) have become quite popular in time series forecasting in various fields. This paper demonstrates the use of ANN to forecast ...

2013
Paul L. Anderson Mark M. Meerschaert Kai Zhang

Periodic autoregressive moving average (PARMA) models are indicated for time series whose mean, variance and covariance function vary with the season. In this study, we develop and implement forecasting procedures for PARMA models. Forecasts are developed using the innovations algorithm, along with an idea of Ansley. A formula for the asymptotic error variance is provided, so that Gaussian pred...

2002
C. W. Dawson C. Harpham Y. Chen

While engineers have been quantifying rainfall-runoff processes since the mid-19th century, it is only in the last decade that artificial neural network models have been applied to the same task. This paper evaluates two neural networks in this context: the popular multilayer perceptron (MLP), and the radial basis function network (RBF). Using six-hourly rainfall-runoff data for the River Yangt...

2005
Chuntian Cheng Kwok-Wing Chau Yingguang Sun Jianyi Lin

Several artificial neural network (ANN) models with a feed-forward, back-propagation network structure and various training algorithms, are developed to forecast daily and monthly river flow discharges in Manwan Reservoir. In order to test the applicability of these models, they are compared with a conventional time series flow prediction model. Results indicate that the ANN models provide bett...

2009
MEHMET C. DEMIREL MARTIJN J. BOOIJ

This study investigates the selection of an appropriate low flow forecast model for the Meuse River based on the comparison of output uncertainties of different models. For this purpose, three data driven models have been developed for the Meuse River: a multivariate ARMAX model, a linear regression model and an Artificial Neural Network (ANN) model. The uncertainty in these three models is ass...

2014
Shihua Li

Back Propagation (BP) neural network, Widely adopted and utilized in automatic control, image recognition, hydrological forecasting and water quality evaluation, etc., as one of the Artificial Neural Networks, has stronger function and property of mapping, classification, functional fitting. This article takes the water flow of Lanzhou section of Yellow river in China as an example by the way o...

INTRODUCTION Hydrologic drought in the sense of deficient river flow is defined as the periods that river flow does not meet the needs of planned programs for system management. Drought is generally considered as periods with insignificant precipitation, soil moisture and water resources for sustaining and supplying the socioeconomic activities of a region. Thus, it is difficult to give a univ...

2017
Ziya Zhang Victor Koren Michael Smith Seann Reed David Wang

Currently, the river forecasting system deployed in each of 13 River Forecast Centers of the National Weather Service primarily uses lumped parameter models to generate hydrologic simulations. With the deployment of the weather surveillance radar 1988 Doppler radars, more and more precipitation data with high spatial and temporal resolution have become available for hydrologic modeling. Hydrolo...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید