نتایج جستجو برای: first general zagreb index
تعداد نتایج: 2354171 فیلتر نتایج به سال:
Let $G=(V,E)$, $V={v_1,v_2,ldots,v_n}$, be a simple graph with$n$ vertices, $m$ edges and a sequence of vertex degrees$Delta=d_1ge d_2ge cdots ge d_n=delta$, $d_i=d(v_i)$. Ifvertices $v_i$ and $v_j$ are adjacent in $G$, it is denoted as $isim j$, otherwise, we write $insim j$. The first Zagreb index isvertex-degree-based graph invariant defined as$M_1(G)=sum_{i=1}^nd_i^2$, whereas the first Zag...
For a nontrivial graph G, its first Zagreb coindex is defined as the sum of degree sum over all non-adjacent vertex pairs in G and the second Zagreb coindex is defined as the sum of degree product over all non-adjacent vertex pairs in G. Till now, established results concerning Zagreb coindices are mainly related to composite graphs and extremal values of some special graphs. The existing liter...
A real-number to molecular structure mapping is a topological index. It graph invariant method for describing physico-chemical properties of structures specific substances. In that article, We examined pentacene’s chemical composition. The research on the subsequent indices reflected in our paper, we conducted an analysis several including general randic connectivity index, first zagreb sum-con...
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the vertex degrees, and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. In this paper, we investigate Zagreb indices of bicyclic graphs with a given matching number. Sharp upper bounds for the first and second Zagreb indices of bicyclic graphs in terms of the...
for a graph $g$ with edge set $e(g)$, the multiplicative second zagreb index of $g$ is defined as $pi_2(g)=pi_{uvin e(g)}[d_g(u)d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$. in this paper, we identify the eighth class of trees, with the first through eighth smallest multiplicative second zagreb indeces among all trees of order $ngeq 14$.
we give sharp upper bounds on the zagreb indices and lower bounds on the zagreb coindices of chemical trees and characterize the case of equality for each of these topological invariants.
Let G be a simple connected graph. The first and second Zagreb indices have been introduced as vV(G) (v)2 M1(G) degG and M2(G) uvE(G)degG(u)degG(v) , respectively, where degG v(degG u) is the degree of vertex v (u) . In this paper, we define a new distance-based named HyperZagreb as e uv E(G) . (v))2 HM(G) (degG(u) degG In this paper, the HyperZagreb index of the Cartesian p...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید