Abstract Let G be a $\sigma $ -finite abelian group, i.e., $G=\bigcup _{n\geq 1} G_n$ where $(G_n)_{n\geq 1}$ is nondecreasing sequence of finite subgroups. For any $A\subset G$ , let $\underline {\mathrm {d}}( A ):=\liminf _{n\to \infty }\frac {|A\cap G_n|}{|G_n|}$ its lower asymptotic density. We show that for subsets and B whenever A+B )<\underline )+\underline )$ the sumset $A+B$ must pe...