نتایج جستجو برای: f gorenstein projective module
تعداد نتایج: 385715 فیلتر نتایج به سال:
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. The module $M$ is called {it Rickart} if for any $fin S$, $r_M(f)=Se$ for some $e^2=ein S$. We prove that some results of principally projective rings and Baer modules can be extended to Rickart modules for this general settings.
Following the well-established terminology in commutative algebra, any (not necessarily commutative) finite-dimensional local algebra A $A$ with radical J $J$ will be said to short provided 3 = 0 $J^3 0$ . As case, we show: If a has an indecomposable non-projective Gorenstein-projective module M $M$ , then either is self-injective (so that all modules are Gorenstein-projective) and then, of cou...
let $r$ be an arbitrary ring with identity and $m$ a right $r$-module with $s=$ end$_r(m)$. the module $m$ is called {it rickart} if for any $fin s$, $r_m(f)=se$ for some $e^2=ein s$. we prove that some results of principally projective rings and baer modules can be extended to rickart modules for this general settings.
Let R be a commutative Noetherian local ring with residue class field k. In this paper, we mainly investigate direct summands of the syzygy modules of k. We prove that R is regular if and only if some syzygy module of k has a semidualizing summand. After that, we consider whether R is Gorenstein if and only if some syzygy module of k has a G-projective summand.
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
Let R be a commutative noetherian ring and Γ a finite group. In this paper,we study Gorenstein homological dimensions of modules with respect to a semi-dualizing module over the group ring . It is shown that Gorenstein homological dimensions of an -RΓ module M with respect to a semi-dualizing module, are equal over R and RΓ .
let $r$ be a ring and $m$ a right $r$-module with $s=end_r(m)$. a module $m$ is called semi-projective if for any epimorphism $f:mrightarrow n$, where $n$ is a submodule of $m$, and for any homomorphism $g: mrightarrow n$, there exists $h:mrightarrow m$ such that $fh=g$. in this paper, we study sgq-projective and$pi$-semi-projective modules as two generalizations of semi-projective modules. a m...
In this paper, we study a particular case of Gorenstein projective, injective, and flat modules, which we call, respectively, strongly Gorenstein projective, injective, and flat modules. These last three classes of modules give us a new characterization of the first modules, and confirm that there is an analogy between the notion of “Gorenstein projective, injective, and flat modules”and the no...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید