نتایج جستجو برای: ensemble learning

تعداد نتایج: 635149  

Journal: :Journal of Machine Learning Research 2016
Rico Blaser Piotr Fryzlewicz

In machine learning, ensemble methods combine the predictions of multiple base learners to construct more accurate aggregate predictions. Established supervised learning algorithms inject randomness into the construction of the individual base learners in an effort to promote diversity within the resulting ensembles. An undesirable side effect of this approach is that it generally also reduces ...

2011
Prakash Jayant Kulkarni

In this paper, we propose a new research problem on active learning from data streams where data volumes grow continuously. The objective is to label a small portion of stream data from which a model is derived to predict future instances as accurately as possible. We propose a classifier-ensemble based active learning framework which selectively labels instances from data streams to build an e...

2006
Seiji MIYOSHI Tatsuya UEZU Masato OKADA

Conventional ensemble learning combines students in the space domain. On the other hand, in this paper we combine students in the time domain and call it time domain ensemble learning. In this paper, we analyze the generalization performance of time domain ensemble learning in the framework of online learning using a statistical mechanical method. We treat a model in which both the teacher and ...

2008
Martin Sewell

This note presents a chronological review of the literature on ensemble learning which has accumulated over the past twenty years. The idea of ensemble learning is to employ multiple learners and combine their predictions. If we have a committee of M models with uncorrelated errors, simply by averaging them the average error of a model can be reduced by a factor of M. Unfortunately, the key ass...

2009
Zhi-Hua Zhou

An ensemble contains a number of learners which are usually called base learners. The generalization ability of an ensemble is usually much stronger than that of base learners. Actually, ensemble learning is appealing because that it is able to boost weak learners which are slightly better than random guess to strong learners which can make very accurate predictions. So, “base learners” are als...

2000
Harri Lappalainen James W. Miskin

This chapter gives a tutorial introduction to Ensemble Learning, a recently developed Bayesian method. For many problems it is intractable to perform inferences using the true posterior density over the unknown variables. Ensemble Learning allows the true posterior to be approximated by a simpler approximate distribution for which the required inferences are tractable.

2010
Gavin Brown

Ensemble Learning refers to the procedures employed to train multiple learning machines and combine their outputs, treating them as a “committee” of decision makers. The principle is that the committee decision, with individual predictions combined appropriately, should have better overall accuracy, on average, than any individual committee member. Numerous empirical and theoretical studies hav...

2006
Sotiris B. Kotsiantis Dimitris Kanellopoulos Ioannis D. Zaharakis

Linear regression and regression tree models are among the most known regression models used in the machine learning community and recently many researchers have examined their sufficiency in ensembles. Although many methods of ensemble design have been proposed, there is as yet no obvious picture of which method is best. One notable successful adoption of ensemble learning is the distributed s...

2009
Sajib Dasgupta Vincent Ng

Supervised polarity classification systems are typically domain-specific. Building these systems involves the expensive process of annotating a large amount of data for each domain. A potential solution to this corpus annotation bottleneck is to build unsupervised polarity classification systems. However, unsupervised learning of polarity is difficult, owing in part to the prevalence of sentime...

Journal: :journal of advances in computer research 0
fozieh asghari paeenroodposhti department of computer engineering, sari branch, islamic azad university, sari, iran saber nourian department of electrical engineering, sari branch, islamic azad university, sari, iran muhammad yousefnezhad college of computer science and technology, nanjing university of aeronautics and astronautics, nanjing, china

the wisdom of crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. this theory used for in clustering problems. previous researches showed that this theory can significantly increase the stability and performance of lea...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید