نتایج جستجو برای: ensemble classifiers
تعداد نتایج: 65315 فیلتر نتایج به سال:
Since accurate classification of DNA microarray is a very important issue for the treatment of cancer, it is more desirable to make a decision by combining the results of various expert classifiers rather than by depending on the result of only one classifier. In spite of the many advantages of mutually error-correlated ensemble classifiers, they are limited in performance. It is difficult to c...
This article is devoted to a new iterative construction of hierarchical classifiers in SimpleCLI for the detection of phishing websites. Our new construction of hierarchical systems creates ensembles of ensembles in SimpleCLI by iteratively linking a top-level ensemble to another middle-level ensemble instead of a base classifier so that the top-level ensemble can generate a large multilevel sy...
speaker verification is the process of accepting or rejecting claimed identity in terms of its sound features. a speaker verification system can be used for numerous security systems, including bank account accessing, getting to security points, criminology and etc. when a speaker verification system wants to check the identity of individuals remotely, it confronts problems such as noise effect...
In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchica...
This paper introduces an original method for guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smalle...
This paper presents the application of Artificial Immune Systems to the design of classifier ensembles. Ensembles of classifiers are a very interesting alternative to single classifiers when facing difficult problems. In general, ensembles are able to achieve better performance in terms of learning and generalisation errors. Several papers have shown that the processes of classifier design and ...
One of the major developments in machine learning in the past decade is the ensemble method, which finds highly accurate classifier by combining many moderately accurate component classifiers. In this research work, new ensemble classification methods are proposed for homogeneous ensemble classifiers using bagging and heterogeneous ensemble classifiers using arcing classifier and their performa...
Classifier ensemble techniques are effectively used to combine the responses provided by a set of classifiers. Classifier ensembles improve the performance of single classifier systems, even if a large number of classifiers is often required. This implies large memory requirements and slow speeds of classification, making their use critical in some applications. This problem can be reduced by s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید