نتایج جستجو برای: eigenvalues
تعداد نتایج: 18864 فیلتر نتایج به سال:
in this paper, the rayleigh's quotient and the inverse vector iteration method are presented. the latter approach helps to obtain the natural frequencies and mode shapes of a structure. inverse vector iteration method with shifting enables to determine the higher modes. some basic theorems of linear algebra are presented and extended to study the free vibration of structures. the variation...
In this paper, we obtain a comparison of Steklov eigenvalues and Laplacian on graphs discuss its rigidity. As applications the eigenvalues, Lichnerowicz-type estimates some combinatorial for graphs.
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
In this paper, the asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated. Furthermore, we obtain the zeros of eigenfunctions.
Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)
Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruen...
In this paper, we define the symmetric hyperdeterminant, eigenvalues and E-eigenvalues of a real supersymmetric tensor. We show that eigenvalues are roots of a one-dimensional polynomial, and when the order of the tensor is even, E-eigenvalues are roots of another one-dimensional polynomial. These two one-dimensional polynomials are associated with the symmetric hyperdeterminant. We call them t...
let $n$ be any positive integer, the friendship graph $f_n$ consists of $n$ edge-disjoint triangles that all of them meeting in one vertex. a graph $g$ is called cospectral with a graph $h$ if their adjacency matrices have the same eigenvalues. recently in href{http://arxiv.org/pdf/1310.6529v1.pdf}{http://arxiv.org/pdf/1310.6529v1.pdf} it is proved that if $g$ is any graph cospectral with $f_n$...
let $g$ be a simple graph with vertex set $v(g) = {v_1, v_2,ldots, v_n}$ and $d_i$ the degree of its vertex $v_i$, $i = 1, 2,cdots, n$. inspired by the randi'c matrix and the general randi'cindex of a graph, we introduce the concept of general randi'cmatrix $textbf{r}_alpha$ of $g$, which is defined by$(textbf{r}_alpha)_{i,j}=(d_id_j)^alpha$ if $v_i$ and $v_j$ areadjacent, and zero otherwise. s...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید