نتایج جستجو برای: egarch
تعداد نتایج: 504 فیلتر نتایج به سال:
This paper proposes a new method to forecast S&P 500 return distribution by combining quantile regression models using macro-finance variables with volatility-based models including various standard EGARCH and stochastic volatility specifications. 30 density forecasting models are compared and combined in an out-of-sample forecasting exercise. Using macro-finance variables is found to help subs...
Methods: Using daily exchange rates for 7 years (January 1, 2008, to April 30, 2015), this study attempted to model dynamics following generalized autoregressive conditional heteroscedastic (GARCH), asymmetric power ARCH (APARCH), exponential generalized autoregressive conditional heteroscedstic (EGARCH), threshold generalized autoregressive conditional heteroscedstic (TGARCH), and integrated g...
In this paper, we estimate GARCH, EGARCH, and GJR-GARCH models assuming normal and heavy-tailed distribution (i.e., GED). Results suggest that when the heavy-tailed distribution is considered, the persistence has found to be reduced in all the cases. Findings also reveal that positive shocks are more common than the negative shocks in this market.
We provide a simple, yet highly effective framework for forecasting return volatility by combining exponential generalized autoregressive conditional heteroscedasticity models with data on the range. Using Standard and Poor’s 500 index data for 1983–2004, we demonstrate the importance of a long-memory specification, based on either a two-factor structure or fractional integration, that allows f...
4 GARCH Models 7 4.1 Basic GARCH Specifications . . . . . . . . . . . . . . . . . . . 8 4.2 Diagnostic Checking . . . . . . . . . . . . . . . . . . . . . . . 11 4.3 Regressors in the Variance Equation . . . . . . . . . . . . . . . 12 4.4 The GARCH–M Model . . . . . . . . . . . . . . . . . . . . . . 12 4.5 The Threshold GARCH (TARCH) Model . . . . . . . . . . . . 12 4.6 The Exponential GARCH (EG...
Recent research suggests that long memory can be caused by regime switching and is easily confused with it. However, if the causes of confusion were properly controlled, they could distinguished. Motivated this idea, our study aims to distinguish between financial volatility. We firstly modeled volatility using Fractionally Integrated Exponential GARCH (FIEGARCH) Markov Regime-Switching EGARCH ...
Data finansial yang mengikuti deret waktu memiliki keragaman atau volatilitas setiap waktunya tidak konstan. Keadaan ini disebut sebagai heteroskedastisitas. Metode dapat menyelesaikan masalah tersebut adalah Autoregressive Conditional Heteroscedasticity (ARCH)/Generalized (GARCH). Namun, ARCH/GARCH mengatasi beberapa kasus seperti perbedaan dalam nilai leverage effect. Sehingga dilakukan pemod...
A comprehensive comparison of the volatility predictive abilities different classes time-varying models is considered. The include exponential GARCH (EGARCH) and stochastic (SV) using daily returns, heterogeneous autoregressive (HAR) model realized (RV) EGARCH (REGARCH) SV (RSV) both. All are extended to accommodate well-known phenomenon in stock markets a negative correlation between today’s r...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید