نتایج جستجو برای: eeg spectral features
تعداد نتایج: 700898 فیلتر نتایج به سال:
OBJECTIVE Electromyogram (EMG) contamination is often a problem in electroencephalogram (EEG) recording, particularly, for those applications such as EEG-based brain-computer interfaces that rely on automated measurements of EEG features. As an essential prelude to developing methods for recognizing and eliminating EMG contamination of EEG, this study defines the spectral and topographical char...
Abstract Epilepsy is a chronic nervous disorder, which disturbs the normal daily routine of an epileptic patient due to sudden seizure onset. In this era smart healthcare, automated prediction techniques could assist patients, their family, and medical personnel control manage these seizures. This paper proposes spectral feature-based two-layer LSTM network model for automatic seizures using lo...
Electroencephalogram (EEG) signals extracted during imagined activities have been studied for use in Brain Computer Interface (BCI) applications. The major hurdle in the EEG based BCI is that the EEG signals are unique to each individual. This complicates a universal BCI design. On the contrary, this disadvantage is the advantage when it comes to using EEG signals from imagined activities for b...
Addiction is a biological, psychological, and social disease. Several factors are involved in etiology, substance abuse, and addiction which interact with each other and lead to the beginning of drug use and then addiction. Heroin is an addictive drug that, by acting on the central nervous system, reduces the density of neurons in the brain and interferes with decision making. This paper examin...
Electroencephalogram (EEG) examination plays a very important role in the diagnosis of disorders related to epilepsy in clinic. However, epileptic EEG is often contaminated with lots of artifacts such as electrocardiogram (ECG), electromyogram (EMG) and electrooculogram (EOG). These artifacts confuse EEG interpretation, while rejecting EEG segments containing artifacts probably results in a sub...
Determining a seizure is essential in order to support the diagnosis and treatment of an epileptic patient. The objective of this work is to automatically detect the epileptic seizures in a patient from EEG signal. As compared to different biological signals like PET, MEG, MRI, FMRI etc, EEG signal is found to be more advantageous. The recorded EEG signal was first preprocessed. Features of the...
A novel approach for Microsleep Event detection is presented. This is achieved based on multisensor electroencephalogram (EEG) and electrooculogram (EOG) measurements recorded during an overnight driving simulation task. First, using video clips of the driving, clear Microsleep (MSE) and Non-Microsleep (NMSE) events were identified. Next, segments of EEG and EOG of the selected events were anal...
Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate t...
Detection of movement intention from the movement-related cortical potential (MRCP) derived from the electroencephalogram (EEG) signals has shown to be important in combination with assistive devices for effective neurofeedback in rehabilitation. In this study, we compare time and frequency domain features to detect movement intention from EEG signals prior to movement execution. Data were reco...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید