نتایج جستجو برای: edge distance

تعداد نتایج: 343714  

Journal: :Electr. J. Comb. 2005
He Chen Xueliang Li

Let G be an edge-colored graph. A heterochromatic path of G is such a path in which no two edges have the same color. dc(v) denotes the color degree of a vertex v of G. In a previous paper, we showed that if dc(v) ≥ k for every vertex v of G, then G has a heterochromatic path of length at least dk+1 2 e. It is easy to see that if k = 1, 2, G has a heterochromatic path of length at least k. Sait...

Journal: :iranian journal of mathematical chemistry 2012
a. mahmiani o. khormali a. iranmanesh

the edge versions of reverse wiener indices were introduced by mahmiani et al. veryrecently. in this paper, we find their relation with ordinary (vertex) wiener index in somegraphs. also, we compute them for trees and tuc4c8(s) naotubes.

In this paper, a new algorithm for edge detection based on fuzzyconcept is suggested. The proposed approach defines dynamic membershipfunctions for different groups of pixels in a 3 by 3 neighborhood of the centralpixel. Then, fuzzy distance and -cut theory are applied to detect the edgemap by following a simple heuristic thresholding rule to produce a thin edgeimage. A large number of experime...

2000
Zdzislaw Król

In this paper a new fully automatic method for registration of intramodal medical data is proposed. The method combines edge detection at diierent thresholds with chamfer distance transformation. The result is a distance map which is weighted by the importance of the edges which are extracted. As an alternative to the user-dependent non-automatic registration methods this approach ooers a good ...

2009
J. CICHOŃ

Let X be a countable discrete metric space and let XX denote the family of all functions on X. In this article, we consider the problem of finding the least cardinality of a subset A of XX such that every element of XX is a finite composition of elements of A and Lipschitz functions on X. It follows from a classical theorem of Sierpiński that such an A either has size at most 2 or is uncountabl...

Journal: :Discussiones Mathematicae Graph Theory 2012
A. P. Santhakumaran

For any vertex v and any edge e in a non-trivial connected graph G, the distance sum d(v) of v is d(v) = ∑ u∈V d(v, u), the vertex-to-edge distance sum d1(v) of v is d1(v) = ∑ e∈E d(v, e), the edge-to-vertex distance sum d2(e) of e is d2(e) = ∑ v∈V d(e, v) and the edge-to-edge distance sum d3(e) of e is d3(e) = ∑ f∈E d(e, f). The set M(G) of all vertices v for which d(v) is minimum is the media...

Journal: :J. Discrete Algorithms 2005
Takehiro Ito Akira Kato Xiao Zhou Takao Nishizeki

For a bounded integer , we wish to color all edges of a graph G so that any two edges within distance have different colors. Such a coloring is called a distance-edge-coloring or an -edge-coloring of G. The distance-edge-coloring problem is to compute the minimum number of colors required for a distance-edge-coloring of a given graph G. A partial k-tree is a graph with tree-width bounded by a f...

Journal: :International Journal of Computational Intelligence Systems 2011

‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=sum_{{f,g}subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=frac{1}{2}sum_{fin E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ‎where de(f,g|G) denotes the distance between the edges f=xy and g=uv in E(G) and de(f|G)=∑g€(G)de(f,g|G). ‎In thi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید