نتایج جستجو برای: e open set
تعداد نتایج: 1961413 فیلتر نتایج به سال:
in this paper, we have dened and studied a generalized form of topological vectorspaces called s-topological vector spaces. s-topological vector spaces are dened by using semi-open sets and semi-continuity in the sense of levine. along with other results, it is provedthat every s-topological vector space is generalized homogeneous space. every open subspaceof an s-topological vector space is ...
In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and ...
Here we present an overview of countably-normed spaces. We discuss the main topologies—weak, strong, and inductive—placed on the dual of a countably-normed space and discuss the σ–fields generated by these topologies. In particular, we show that under certain conditions the strong and inductive topologies coincide and the σ–fields generated by the weak, strong, and inductive topologies are equa...
Here we present an overview of countably-normed spaces. In particular, we discuss the main topologies—weak, strong, and inductive—placed on the dual of a countably-normed space and discuss the σ-fields generated by these topologies. The purpose in mind is to provide the background material for many of the results used is White Noise Analysis. 1. Topological Vector Spaces In the introduction we ...
Here we present an overview of countably-normed spaces. We discuss the main topologies—weak, strong, and inductive—placed on the dual of a countably-normed space and discuss the σ–fields generated by these topologies. In particular, we show that under certain conditions the strong and inductive topologies coincide and the σ–fields generated by the weak, strong, and inductive topologies are equa...
in this paper, we introduce and characterize fuzzy wea-kly $e$-closed functions in fuzzy topological spaces and the relationship between these mappings and some properties of them are investigated.
In this paper, the notion of maximal m-open set is introduced and itsproperties are investigated. Some results about existence of maximal m-open setsare given. Moreover, the relations between maximal m-open sets in an m-spaceand maximal open sets in the corresponding generated topology are considered.Our results are supported by examples and counterexamples.
The notion of -open sets in a topological space was studied by Velicko. Usha Parmeshwari et.al. and Indira introduced the concepts b# *b open respectively. Following this Ekici et. al. notions e-open e-closed mixing closure, interior, -interior -closure operators. In paper some new namely e#-open *e-open are defined their relationship with other similar concetps spaces will be investigated.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید