نتایج جستجو برای: dominating graph
تعداد نتایج: 206446 فیلتر نتایج به سال:
Given a graph $G=(V,E)$ and a vertex $v in V$, by $N(v)$ we represent the open neighbourhood of $v$. Let $f:Vrightarrow {0,1,2}$ be a function on $G$. The weight of $f$ is $omega(f)=sum_{vin V}f(v)$ and let $V_i={vin V colon f(v)=i}$, for $i=0,1,2$. The function $f$ is said to bebegin{itemize}item a Roman ${2}$-dominating function, if for every vertex $vin V_0$, $sum_{uin N(v)}f(u)geq 2$. The R...
Abstract. The middle edge dominating graph Med(G) of a graph G=(V,E) is a graph with the vertex set E ∪S where S is the set of all minimal edge dominating set G and with two vertices u, v є E ∪S adjacent if u є E and V=F is a minimal edge dominating set of G containing u or u,v are not disjoint minimal edge dominating sets in S .In this paper we discuss about the middle edge dominating graph of...
For a given graph G = (V,E), a set D ⊆ V (G) is said to be an outerconnected dominating set if D is dominating and the graph G−D is connected. The outer-connected domination number of a graph G, denoted by γ̃c(G), is the cardinality of a minimum outer-connected dominating set of G. We study several properties of outer-connected dominating sets and give some bounds on the outer-connected dominati...
Let be a simple graph with vertex set and edges set . A set is a dominating set if every vertex in is adjacent to at least one vertex in . An eternal 1-secure set of a graph G is defined as a dominating set such that for any positive integer k and any sequence of vertices, there exists a sequence of guards with and either or and is a dominating set. If we take a guard on every ver...
Given a graphG, the k-dominating graph ofG, Dk(G), is defined to be the graph whose vertices correspond to the dominating sets of G that have cardinality at most k. Two vertices in Dk(G) are adjacent if and only if the corresponding dominating sets of G differ by either adding or deleting a single vertex. The graph Dk(G) aids in studying the reconfiguration problem for dominating sets. In parti...
a set $s$ of vertices in a graph $g=(v,e)$ is called a total$k$-distance dominating set if every vertex in $v$ is withindistance $k$ of a vertex in $s$. a graph $g$ is total $k$-distancedomination-critical if $gamma_{t}^{k} (g - x) < gamma_{t}^{k}(g)$ for any vertex $xin v(g)$. in this paper,we investigate some results on total $k$-distance domination-critical of graphs.
Let G be an undirected graph with vertex and edge sets V (G) E(G), respectively. A subset S of vertices is a geodetic hop dominating set if it both set. The domination number G, γhg(G), the minimum cardinality among all in G. Geodetic resulting from some binary operations have been characterized. These characterizations used to determine tight bounds for each graphs considered.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید