نتایج جستجو برای: discrete time markov chain

تعداد نتایج: 2264072  

Journal: :APJOR 2013
Jeffrey J. Hunter

The distribution of the “mixing time” or the “time to stationarity” in a discrete time irreducible Markov chain, starting in state i, can be defined as the number of trials to reach a state sampled from the stationary distribution of the Markov chain. Expressions for the probability generating function, and hence the probability distribution of the mixing time starting in state i are derived an...

Journal: :Southeast Europe Journal of Soft Computing 2013

2003
Jeffrey J. Hunter

A measure of the “mixing time” or “time to stationarity” in a finite irreducible discrete time Markov chain is considered. The statistic η π i ij j m j m = = ∑ 1 , where {πj} is the stationary distribution and mij is the mean first passage time from state i to state j of the Markov chain, is shown to be independent of the state i that the chain starts in (so that ηi = η for all i), is minimal i...

Journal: :Discrete and Continuous Dynamical Systems-series B 2021

In the last years, several authors studied a class of continuous-time semi-Markov processes obtained by time-changing Markov hitting times independent subordinators. Such are governed integro-differential convolution equations generalized fractional type. The aim this paper is to develop discrete-time counterpart such theory and show relationships differences with r...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید بهشتی 1386

چکیده ندارد.

2006
R. J. VANDERBEI

Considering difference equations in discrete space instead of differential equations in Euclidean space, we investigate a probabilistic formula for the solution of the Dirichlet problem for biharmonic functions. This formula involves the expectation of a weighted sum of the pay-offs at the successive times at which the Markov chain is in the complement of the domain. To make the infinite sum co...

Journal: :JCP 2014
Chaoyi Zhang Yandong Zhao Junguo Zhang

This paper focuses on relay node scheduling method which is based on an improved discrete Markov chain. It presents a single relay node’s existing state, analyzes its access behavior, and summarizes various linear system design, according to our present balanced equations and form state transition probability, nodes are scheduled in relay network, the improved discrete time Markov chain is used...

2006
Koushik Sen Mahesh Viswanathan Gul A. Agha

We investigate the problem of model checking Interval-valued Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite Markov Chains for which the exact transition probabilities are not known. Instead in IDTMCs, each transition is associated with an interval in which the actual transition probability must lie. We consider two semantic interpretations for the uncertainty in the transi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->