نتایج جستجو برای: cupric oxide
تعداد نتایج: 179513 فیلتر نتایج به سال:
The use of sunlight for photoelectrochemically splitting water into hydrogen and oxygen has aroused great interest in the last decades. Photocathode materials based on cupric oxide (CuO) are promising large-scale, widespread photoelectrochemical due to high Earth-abundance copper, suitable band gap, favorable alignment generation. main challenge development practical CuO photocathodes is enhanc...
Herein, we demonstrate the fabrication of a robust enzymeless glucose sensor based on CuO nanoseeds (CNSs) synthesized at low-temperature. The as-fabricated sensor exhibited excellent electrocatalytic ability in a wide-linear range and was further employed for the glucose concentration determined in freshly drawn mice whole blood and serum samples.
Materials that combine coupled electric and magnetic dipole order are termed 'magnetoelectric multiferroics'. In the past few years, a new class of such materials, 'induced-multiferroics', has been discovered, wherein non-collinear spiral magnetic order breaks inversion symmetry, thus inducing ferroelectricity. Spiral magnetic order often arises from the existence of competing magnetic interact...
We have investigated the magnetic properties of CuNCN, the first nitrogen-based analog of cupric oxide CuO. Our muon-spin relaxation, nuclear magnetic resonance, and electron-spin resonance studies reveal that classical magnetic ordering is absent down to the lowest temperatures. However, a large enhancement of spin correlations and an unexpected inhomogeneous magnetism have been observed below...
Phonons, the quantum mechanical representation of lattice vibrations, and their coupling to the electronic degrees of freedom are important for understanding thermal and electric properties of materials. For the first time, phonons have been measured using resonant inelastic x-ray scattering (RIXS) across the Cu K-edge in cupric oxide (CuO). Analyzing these spectra using an ultra-short core-hol...
Inspired by a sequential hydrolysis-precipitation mechanism, morphology-controllable hierarchical cupric oxide (CuO) nanostructures are facilely fabricated by a green water/ethanol solution-phase transformation of Cu(x)(OH)(2x-2)(SO4) precursors in the absence of any organic capping agents and without annealing treatment in air. Antlerite Cu3(OH)4(SO4) precursors formed in a low volume ratio be...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید