نتایج جستجو برای: cu doped zno nanorods
تعداد نتایج: 129735 فیلتر نتایج به سال:
In this work, pure and different metal ions doped ZnO thin films were obtained by a facile electrochemical deposition process. Different morphologies of ZnO, such as nanoplates, nanoparticles, as well as dense film can be obtained by doping Cu, In, and Al, respectively. Besides, the electrical properties of ZnO were also dependent on the doping ions. In this work, only pure ZnO shows resistive ...
A solution-grown subwavelength antireflection coating has been investigated for enhancing the photovoltaic efficiency of thin film solar cells. The 100-nm-height ZnO nanorods coating benefited the photocurrent of Cu(In,Ga)Se2 solar cells from 31.7 to 34.5 mA/cm2 via the decrease of surface light reflectance from 14.5% to 7.0%, contributed by the gradual refractive index profile between air and ...
Ce-doped ZnO (ZnO:Ce) nanorods have been prepared through a solvothermal method and the effects of Ce-doping on the structural, optical and electronic properties of ZnO rods were studied. ZnO:Ce rods were characterized by XRD, SEM, TEM, XPS, BET, DRS and Raman spectroscopy. 5% Ce-doped ZnO rods with an average length of 130 nm and a diameter of 23 nm exhibit the highest photocatalytic activity ...
As an alternative photosensitizer in dye-sensitized solar cells, bovine serum albumin (BSA) (a nonhazardous protein) was used in the synthesis of colloidal CdS nanoparticles (NPs). This system has been employed to replace the commonly used N719 dye molecule. Various nanostructured forms of ZnO, namely, nanorod and nanoparticle-based photoanodes, have been sensitized with colloidal CdS NPs to ev...
Related Articles Enhancement of the photoelectrochemical properties of Cl-doped ZnO nanowires by tuning their coaxial doping profile Appl. Phys. Lett. 99, 262102 (2011) Doping profile of InP nanowires directly imaged by photoemission electron microscopy Appl. Phys. Lett. 99, 233113 (2011) Hafnium-doped GaN with n-type electrical resistivity in the 104cm range Appl. Phys. Lett. 99, 202113 (2011)...
High quality and purity single crystal ZnO samples doped with single isotopes of (63)Cu and (65)Cu, with equal concentrations of both these isotopes, and with natural Cu using a wet chemical atomic substitution reaction and anneal were studied using low temperature optical spectroscopy. Our data on the zero phonon line of the structured green band in ZnO confirm unambiguously the involvement of...
In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. ...
Solution-based ZnO nanorod arrays (NRAs) were modified with controlled N doping by an advanced ion implantation method, and were subsequently utilized as photoanodes for photoelectrochemical (PEC) water splitting under visible light irradiation. A gradient distribution of N dopants along the vertical direction of ZnO nanorods was realized. N doped ZnO NRAs displayed a markedly enhanced visible-...
ZnO nanorods have been grown on Si(001) wafer and fluorine-doped tin oxide (FTO) glass substrates for 1 and 4 h with the hydrothermal methods. The morphologies and photocatalytic activities of the ZnO nanorods were found to depend on the substrates. We investigated their properties by using spectroscopic analysis and demonstrated that the shape of nanorod and the ratios of external defects can ...
This paper presents the growth and structure of ZnO nanorods on a sub-micrometer glass pipette and their application as an intracellular selective ion sensor. Highly oriented, vertical and aligned ZnO nanorods were grown on the tip of a borosilicate glass capillary (0.7 µm in diameter) by the low temperature aqueous chemical growth (ACG) technique. The relatively large surface-to-volume ratio o...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید