نتایج جستجو برای: convolution quadrature
تعداد نتایج: 29209 فیلتر نتایج به سال:
In this article we generalize the convolution quadrature (CQ) method, which aims at approximating fractional calculus, to case for distributed order calculus. Our method is a natural expansion that approximation formulas, convergence results and correction technique reduce cases CQ if weight function $ \mu(\alpha) defined by \delta(\alpha-\alpha_0) $. Further, explore new structure of solution ...
We consider time domain acoustic scattering from a penetrable medium with a variable sound speed. This problem can be reduced to solving a time domain volume Lippmann-Schwinger integral equation. Using convolution quadrature in time and trigonometric collocation in space we can compute an approximate solution. We prove that the time domain Lippmann-Schwinger equation has a unique solution and p...
We consider the numerical solution of the wave equation with impedance boundary conditions and start from a boundary integral formulation for its discretization. We develop the generalized convolution quadrature (gCQ) to solve the arising acoustic retarded potential integral equation for this impedance problem. For the special case of scattering from a spherical object, we derive representation...
Abstract The semidiscretization of a sound soft scattering problem modelled by the wave equation is analyzed. spatial treatment done integral methods. Two temporal discretizations based on Runge–Kutta convolution quadrature are compared: one relies incoming as input data and other its derivative. convergence rate latter shown to be higher than previously established in literature. Numerical res...
We propose and study a numerical method for time discretization of linear and semilinear integro-partial differential equations that are intermediate between diffusion and wave equations, or are subdiffusive. The method uses convolution quadrature based on the second-order backward differentiation formula. Second-order error bounds of the time discretization and regularity estimates for the sol...
Localised polynomial approximations on the sphere have a variety of applications in areas such as signal processing, geomathematics and cosmology. Filtering is a simple and effective way of constructing a localised polynomial approximation. In this thesis we investigate the localisation properties of filtered polynomial approximations on the sphere. Using filtered polynomial kernels and a speci...
We study the approximation properties of Runge-Kutta time discretizations of linear and semilinear parabolic equations, including incompressible Navier-Stokes equations. We derive asymptotically sharp error bounds and relate the temporal order of convergence, which is generally noninteger, to spatial regularity and the type of boundary conditions. The analysis relies on an interpretation of Run...
We study the numerical approximation of an integro-differential equation which is intermediate between the heat and wave equations. The proposed discretization uses convolution quadrature based on the firstand second-order backward difference methods in time, and piecewise linear finite elements in space. Optimal-order error bounds in terms of the initial data and the inhomogeneity are shown fo...
In this paper we consider time-dependent electromagnetic scattering problems from conducting objects. We discretize the time-domain electric field integral equation using RungeKutta convolution quadrature in time and a Galerkin method in space. We analyze the involved operators in the Laplace domain and obtain convergence results for the fully discrete scheme. Numerical experiments indicate the...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید