نتایج جستجو برای: convex quadratic programming

تعداد نتایج: 416944  

2015
Martin Ames Harrison

The Helton-Nie Conjecture (HNC) is the proposition that every convex semialgebraic set is a spectrahedral shadow. Here we prove that HNC is equivalent to another proposition related to quadratically constrained quadratic programming. Namely, that the convex hull of the rank-one elements of any spectrahedron is a spectrahedral shadow. In the case of compact convex semialgebraic sets, the spectra...

2007
D. C. Marcilio

We are considering the application of the Augmented Lagrangian algorithms with quadratic penalty, to convex problems of quadratic programming. The problems of quadratic programming are composites of quadratic objective function and linear constraints. This important class of problems will be generated through the algorithm of sequential quadratic programming, where at each iteration the quadrat...

Journal: :Math. Program. 2014
Samuel Burer Adam N. Letchford

This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a set in the family. Some fundamental properties of the convex sets are derived, along with connections to some o...

2014
M. Marques Alves Benar F. Svaiter

This paper presents and studies the iteration-complexity of two new inexact variants of Rockafellar’s proximal method of multipliers (PMM) for solving convex programming (CP) problems with a finite number of functional inequality constraints. In contrast to the first variant which solves convex quadratic programming (QP) subproblems at every iteration, the second one solves convex constrained q...

2002
Masakazu Kojima Sunyoung Kim Hayato Waki H. Waki

The class of POPs (Polynomial Optimization Problems) over cones covers a wide range of optimization problems such as 0-1 integer linear and quadratic programs, nonconvex quadratic programs and bilinear matrix inequalities. This paper presents a new framework for convex relaxation of POPs over cones in terms of linear optimization problems over cones. It provides a unified treatment of many exis...

2006
Klaus Schittkowski Christian Zillober

Abs t rac t We introduce some methods for constrained nonlinear programming that are widely used in practice and that are known under the names SQP for sequential quadratic programming and SCP for sequential convex programming. In both cases, convex subproblems are formulated, in the first case a quadratic programming problem, in the second case a separable nonlinear program in inverse variable...

Journal: :The Computer Science Journal of Moldova 1997
Vasile Moraru

Herein is investigated the method of solution of quadratic programming problems. The algorithm is based on the effective selection of constraints. Quadratic programming with constraintsequalities are solved with the help of an algorithm, so that matrix inversion is avoided, because of the more convenient organization of the Calculus. Optimal solution is determined in a finite number of iteratio...

1999
Akiko Takeda Masakazu Kojima

The quadratic bilevel programming problem is an instance of a quadratic hierarchical decision process where the lower level constraint set is dependent on decisions taken at the upper level. By replacing the inner problem by its corresponding KKT optimality conditions, the problem is transformed to a single yet non-convex quadratic program, due to the complementarity condition. In this paper we...

2003
Klaus Schittkowski Christian Zillober

We introduce some methods for constrained nonlinear programming that are widely used in practice and that are known under the names SQP for sequential quadratic programming and SCP for sequential convex programming. In both cases, convex subproblems are formulated, in the first case a quadratic programming problem, in the second case a separable nonlinear program in inverse variables. The metho...

Journal: :Oper. Res. Lett. 2012
Vaithilingam Jeyakumar Guoyin Li

An exact semidefinite linear programming (SDP) relaxation of a nonlinear semidefinite programming problem is a highly desirable feature because a semidefinite linear programming problem can efficiently be solved. This paper addresses the basic issue of which nonlinear semidefinite programming problems possess exact SDP relaxations under a constraint qualification. We do this by establishing exa...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید