نتایج جستجو برای: convex nonlinear programming

تعداد نتایج: 580139  

Journal: :SIAM Journal on Optimization 2012
Dinh Quoc Tran Carlo Savorgnan Moritz Diehl

This paper proposes an algorithmic framework for solving parametric optimization problems which we call adjoint-based predictor-corrector sequential convex programming. After presenting the algorithm, we prove a contraction estimate that guarantees the tracking performance of the algorithm. Two variants of this algorithm are investigated. The first can be used to treat online parametric nonline...

Journal: :Computers & Chemical Engineering 2013
Juan P. Ruiz Ignacio E. Grossmann

In this paper we present a framework to generate tight convex relaxations for nonconvex generalized disjunctive programs. The proposed methodology builds on our recent work on bilinear and concave generalized disjunctive programs for which tight linear relaxations can be generated, and extends its application to nonlinear relaxations. This is particularly important for those cases in which the ...

2005
Jan Brinkhuis Zhi-Quan Luo Shuzhong Zhang

In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Löwner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function − log X to study a new notion of weighted centers for semidefinite programming (SDP) and show that, with this definition, some known pro...

Journal: :J. Global Optimization 2009
Steffen Rebennack Josef Kallrath Panos M. Pardalos

We propose a decomposition algorithm for a special class of nonconvex mixed integer nonlinear programming problems which have an assignment constraint. If the assignment decisions are decoupled from the remaining constraints of the optimization problem, we propose to use a column enumeration approach. The master problem is a partitioning problem whose objective function coefficients are compute...

Journal: :Comp. Opt. and Appl. 2006
Claus Still Tapio Westerlund

In this article we look at a new algorithm for solving convex mixed integer nonlinear programming problems. The algorithm uses an integrated approach, where a branch and bound strategy is mixed with solving nonlinear programming problems at each node of the tree. The nonlinear programming problems, at each node, are not solved to optimality, rather one iteration step is taken at each node and t...

Journal: :J. Global Optimization 2013
M. Li Luís Nunes Vicente

In the context of convex mixed integer nonlinear programming (MINLP), we investigate how the outer approximation method and the generalized Benders decomposition method are affected when the respective nonlinear programming (NLP) subproblems are solved inexactly. We show that the cuts in the corresponding master problems can be changed to incorporate the inexact residuals, still rendering equiv...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید