نتایج جستجو برای: coated fe3o4 magnetic nanoparticles

تعداد نتایج: 477307  

2015
Hanieh Shirazi Maryam Daneshpour Soheila Kashanian Kobra Omidfar

The unique properties and applications of iron oxide and Au nanoparticles have motivated researchers to synthesize and optimize a combined nanocomposite containing both. By using various polymers such as chitosan, some of the problems of classic core-shell structures (such as reduced saturation magnetization and thick coating) have been overcome. In the present study, chitosan and one of its we...

2016
Junran Zhang Zhenyao Wu Minhao Zhang Wei Niu Ming Gao Ying Zhou Wenqing Liu Xuefeng Wang Rong Zhang Yongbing Xu

We demonstrated the effect of superparamagnetic Fe3O4 nanoparticles on Schottky barriers of graphene, in which the Fe3O4 nanoparticles were fabricated by a hydrothermal method and the single-layer graphene sheets were mechanically exfoliated from Kish graphite. The Fe3O4 nanoparticles were superparamagnetic with the saturation magnetic moment of about 32 emu/g at room temperature. We have found...

2017
You-Hwan Son Youngsoo Jung Heesuk Roh Jung-Kun Lee

Stable hydrophobic nanocomposites of magnetic nanoparticles and clay are prepared by the self-assembly of magnetite (Fe3O4) nanoparticles on surfaces of exfoliated clay platelets. Due to the attractive interaction between hydrophobic groups, oleic acid coated nanoparticles are strongly attached to the surface of cetyl trimethylammonium cation coated clay platelets in organic media. Crystal stru...

Journal: :journal of biomedical physics and engineering 0
m keshtkar d shahbazi-gahrouei m a mehrgardi m aghaei s m khoshfetrat

introduction: one class of magnetic nanoparticles is magnetic iron oxide nanoparticles (mions) which has been widely offered because of their many advantages. because of extensive application of mions in biomedicine, before they can be used in vivo, their cytotoxicity must be investigated. therefore, there is an urgent need for understanding the potential risks associated with mions. materials ...

2014
Duangdao Channei Sukon Phanichphant

The Fe3O4/CeO2 magnetic photocatalyst was prepared by coating directly onto the surface of magnetic Fe3O4 particles. However a direct contact of CeO2 onto the surface of magnetic Fe3O4 particles presented unfavorable heterojunction, thus the SiO2 barrier layer between magnetic Fe3O4 and CeO2 was prepared as a core-shell stucture to reduce the negative effect by combining three steps of the hydr...

2017
Xupeng Mu Fuqiang Zhang Chenfei Kong Hongmei Zhang Wenjing Zhang Rui Ge Yi Liu Jinlan Jiang

Multifunctional nanocomposites that have multiple therapeutic functions together with real-time imaging capabilities have attracted intensive concerns in the diagnosis and treatment of cancer. This study developed epidermal growth factor receptor (EGFR) antibody-directed polydopamine-coated Fe3O4 nanoparticles (Fe3O4@PDA NPs) for magnetic resonance imaging and antitumor chemo-photothermal thera...

2017
Mohamed A. Habila Zeid A. ALOthman Ahmed Mohamed El-Toni Joselito Puzon Labis Aslam Khan Adel Al-Marghany Hussein Elsayed Elafifi

Magnetic nanoparticles are used in adsorptive removal of heavy metals from polluted wastewater. However, their poor stability in an acidic medium necessitates their protection with a coating layer. Coating magnetic nanoparticles with carbon showed proper protection but the heavy metal removal efficiency was slightly weak. However, to boost the removal efficiencies of surface functionalization, ...

Journal: :Journal of the American Chemical Society 2008
Jinhao Gao Wei Zhang Pingbo Huang Bei Zhang Xixiang Zhang Bing Xu

We report a facile intracellular manipulation of fluorescent magnetic Fe3O4-CdSe nanoparticles using magnetic force. The growth of CdSe quantum dots on Fe3O4 nanoparticles produces Fe3O4-CdSe nanoparticles with two distinct properties, fluorescence and superparamagnetism. After nonspecific surface modification using glutathione (GSH), the hydrophilic Fe3O4-CdSe@GSH nanoparticles can be easily u...

2011
Meizhen Gao Wen Li Jingwei Dong Zhirong Zhang Bingjun Yang

The Fe3O4@SiO2 composite nanoparticles were obtained from as-synthesized magnetite (Fe3O4) nanoparticles through the modified Stöber method. Then, the Fe3O4 nanoparticles and Fe3O4@SiO2 composite nanoparticles were characterized by means of X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and vibrating sample magnetometer (VSM). Recently, the studies focus on how to im...

Fe3O4 magnetic nanoparticles were synthesized by co-precipitation of Fe2+ and Fe3+ in aqueous NaOH. Then silica was coated on the obtained nanoparticles and the whole composite was functionalized with chlorosulfonic acid in CH2Cl2. The obtained nanocomposite (Fe3O4@SiO2-SO3H) was characterized by FT-IR, VSM and XRD techniques and was used as an efficient catalyst in condensation reaction of ind...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید