نتایج جستجو برای: co3o4 nanoparticle
تعداد نتایج: 32051 فیلتر نتایج به سال:
Artificial photosynthesis is a very attractive and a desirable way to solve the rising energy demand. In order to harvest energy directly from sunlight catalyst for oxygen reduction and evolution reaction are at the core of key renewable-energy technologies including fuel cells and water splitting. Herein, tungsten oxide-reduced graphene oxide (WO3-rGO), cobalt oxidereduced graphene oxide (Co3O...
A series of novel hierarchical nanoporous microstructures have been synthesized through one-step chemical reduction of micron size Cu2O and Co3O4 particles. By controlling the reduction time, non-porous Cu2O microcubes sequentially transform to nanoporous Cu/Cu2O/Cu dented cubic composites and hollow eightling-like Cu microparticles. The mechanism involved in the complex structural evolution is...
A new concept for preparing hollow metal oxide nanopowders by salt-assisted spray pyrolysis applying nanoscale Kirkendall diffusion is introduced. The composite powders of metal oxide and indecomposable metal salt are prepared by spray pyrolysis. Post-treatment under a reducing atmosphere and subsequent washing using distilled water produce aggregation-free metal nanopowders. The metal nanopowd...
Highly ordered mesoporous Co3O4 materials have been prepared via a nanocasting route with three-dimensional KIT-6 and two-dimensional SBA-15 ordered mesoporous silicas as templates and Co(NO3)2 · 6H2O as precursor. Through changing the hydrothermal treating temperature of the silica template, ordered mesoporous Co3O4 materials with hierarchical structures have been developed. The larger pores a...
In this study, uniform Co3O4 nanoparticles are prepared via a simple and facile hydrothermal synthesis without calcination treatment. When the nanomaterials investigated as anodes for lithium ion batteries, good electrochemical property is achieved. Particularly, reversible capacity of as-synthesized nanoparticle has significant growth from 383 mAh g−1 initial cycle to 471 300th at 2 A g−1. Mor...
In this data article, we presented the electrochemical data of the working electrode made of Co3O4 semi-transparent film. Electrochemically stable, porous nature of Kirkendall-diffusion grown Co3O4 films were applied to generate hydrogen from the seawater splitting (Patel et al., 2017) [1]. The data presented in this article includes the photograph of prepared samples, polarization curves for w...
In this work, we developed an eco-friendly strategy for preparing Co3O4 nanowires. The process consisted of two steps: controllable synthesis of metal cobalt nanowires followed by a facile air-oxidization step. The 1D nanowire structure with a high aspect ratio was easily achieved via a magnetic-field-assisted self-assembly of cobalt ion complexes during reduction. After air-calcinations, the C...
In this research an efficient synthesis of a novel nanocomposite including SiO2@(3-aminopropyl)triethoxysilane-coated cobalt oxide (Co3O4) nanocomposite has been reported by three step method. The structure and magnetic characterization of Co3O4@SiO2@NH2 have been done by using various spectroscopic analyses which include FT-IR, X-ray powder diffraction, scanning electron microscopy, transmissi...
In this study, to fabricate a carbon free (C-free) air electrode, Co3O4 nanofibers were grown directly on a Ni mesh to obtain Co3O4 with a high surface area and good contact with the current collector (the Ni mesh). In Li-air cells, any C present in the air electrode promotes unwanted side reactions. Therefore, the air electrode composed of only Co3O4 nanofibers (i.e., C-free) was expected to s...
A key challenge for rechargeable metal–air batteries is the development of a cost-effective bifunctional catalyst for both oxygen evolution (OER) and reduction (ORR) reactions. Here, we took the advantages of high OER activity of Co3O4 spinel and high ORR activity of Ag to develop a carbon-free oxygen electrode, e.g., for Li–air batteries. The optimized Ag + Co3O4 catalyst was further character...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید