نتایج جستجو برای: clique polynomial
تعداد نتایج: 102055 فیلتر نتایج به سال:
A potential maximal clique of a graph is a vertex set that induces a maximal clique in some minimal triangulation of that graph. It is known that if these objects can be listed in polynomial time for a class of graphs, the treewidth and the minimum 5ll-in are polynomially tractable for these graphs. We show here that the potential maximal cliques of a graph can be generated in polynomial time i...
Let G = (V, E) be a simple undirected graph. A forest F ⊆ E of G is said to be clique-connecting if each tree of F spans a clique of G. This paper adresses the clique-connecting forest polytope. First we give a formulation and a polynomial time separation algorithm. Then we show that the nontrivial nondegenerate facets of the stable set polytope are facets of the clique-connecting polytope. Fin...
Clique-width of graphs is defined algebraically through operations on graphs with vertex labels. We characterise the clique-width in a combinatorial way by means of partitions of the vertex set, using trees of nested partitions where partitions are ordered bottom-up by refinement. We show that the correspondences in both directions, between combinatorial partition trees and algebraic terms, pre...
We consider the “minor” and “homeomorphic” analogues of the maximum clique problem, i.e., the problems of determining the largest h such that the input graph (on n vertices) has a minor isomorphic to Kh or a subgraph homeomorphic to Kh, respectively, as well as the problem of finding the corresponding subgraphs. We term them as the maximum clique minor problem and the maximum homeomorphic cliqu...
The edge clique graph of a graph H is the one having the edge set of H as vertex set, two vertices being adjacent if and only if the corresponding edges belong to a common complete subgraph of H. We characterize the graph classes {edge clique graphs} ∩ {interval graphs} as well as {edge clique graphs} ∩ {probe interval graphs}, which leads to polynomial time recognition algorithms for them. Thi...
A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph of G. The list of minimal forbidden induced subgraphs for the class of clique-per...
An i-triangulated graph is a graph in which every odd cycle has two non-crossing chords; i-triangulated graphs form a subfamily of perfect graphs. A slightly more general family of perfect graphs are clique-separable graphs. A graph is clique-separable precisely if every induced subgraph either has a clique cutset, or is a complete multipartite graph or a clique joined to an arbitrary bipartite...
The notion of strong p-Helly hypergraphs was introduced by Golumbic and Jamison in 1985 [M.C. Golumbic, R.E. Jamison, The edge intersection graphs of paths in a tree, J. Combin. Theory Ser. B 38 (1985) 8–22]. Independently, other authors [A. Bretto, S. Ubéda, J. Žerovnik, A polynomial algorithm for the strong Helly property. Inform. Process. Lett. 81 (2002) 55–57, E. Prisner, Hereditary clique-...
The k-partition problem is as follows: Given a graph G and a positive integer k, partition the vertices of G into at most k parts A1, A2, . . . , Ak, where it may be specified that Ai induces a stable set, a clique, or an arbitrary subgraph, and pairs Ai, Aj (i = j) be completely nonadjacent, completely adjacent, or arbitrarily adjacent. The list k-partition problem generalizes the k-partition ...
An i-triangulated graph is a graph in which every odd cycle has two non-crossing chords; i-triangulated graphs form a subfamily of perfect graphs. A slightly more general family of perfect graphs are clique-separable graphs. A graph is clique-separable precisely if every induced subgraph either has a clique cutset, or is a complete multipartite graph or a clique joined to an arbitrary bipartite...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید