نتایج جستجو برای: chondro cartilage
تعداد نتایج: 34302 فیلتر نتایج به سال:
OBJECTIVE The aim of this study was to evaluate the regenerative potential of cell-laden and cell-free collagen matrices in comparison to microfracture treatment applied to full-thickness chondral defects in an ovine model. METHODS Animals (n = 30) were randomized into 5 treatment groups, and 7-mm full-cartilage-thickness defects were set at the trochlea and medial condyle of both knee joints...
BACKGROUND Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird's Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articu...
Considerable evidence has associated the expression of matrix metalloproteinases (MMPs) with the degradation of cartilage and bone in chronic conditions such as arthritis. Direct evaluation of MMPs' role in vivo has awaited the development of MMP inhibitors with appropriate pharmacological properties. We have identified butanediamide, N4-hydroxy-2-(2-methylpropyl)-N1-[2-[[2-(morpholinyl)ethyl]-...
Mesenchymal stem cells (MSCs) are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this stud...
Microfracture is the standard of care for the treatment of small cartilage defects in the hip. Autologous matrix-induced chondrogenesis (AMIC) is a novel, 1-step approach that combines microfracture with a type I/III collagen matrix (Chondro-Gide; Geistlich Pharma AG, Wolhusen, Switzerland) to cover the microfractured defect area. The AMIC procedure has been successfully established for treatin...
Analysis of strain-rate dependent mechanical behavior of single chondro-cyte : a finite element study. Notice: Changes introduced as a result of publishing processes such as copy-editing and formatting may not be reflected in this document. For a definitive version of this work, please refer to the published source: Various studies have been conducted to investigate the effects of impact loadin...
Background Cartilage has limited intrinsic healing capacity, motivating the application of stem cells for regenerative therapies. Therapies to treat osteochondral defects using cell therapy-based tissue engineering have been developed and used more than 20 years; however, low viability high possibility dispersion injected target defect sites remained challenge. Mussel adhesive protein (MAP) rec...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید