نتایج جستجو برای: chebyshevs polynomials

تعداد نتایج: 37865  

2013
Si Chen Yi Cai Qiu-Ming Luo

Recently, Tremblay, Gaboury and Fugère introduced a class of the generalized Bernoulli polynomials (see Tremblay in Appl. Math. Let. 24:1888-1893, 2011). In this paper, we introduce and investigate an extension of the generalized Apostol-Euler polynomials. We state some properties for these polynomials and obtain some relationships between the polynomials and Apostol-Bernoulli polynomials, Stir...

Journal: :iranian journal of science and technology (sciences) 2011
m. taghavi

from the early 1950s, estimating the autocorrelations of polynomials with coefficients on the unit circle has found applications in ising spin systems and in surface acoustic wave designs. in this paper, a technique is introduced that not only estimates the autocorrelations, but for some special types of such polynomials, it locates the frequencies at which maximum autocorrelation occurs.

Journal: :computational methods for differential equations 0
mohammadreza ahmadi darani shahrekord university. mitra nasiri shahrekord university.

in this paper we introduce a type of fractional-order polynomials basedon the classical chebyshev polynomials of the second kind (fcss). also we construct the operationalmatrix of fractional derivative of order $ gamma $ in the caputo for fcss and show that this matrix with the tau method are utilized to reduce the solution of some fractional-order differential equations.

Journal: :Asymptotic Analysis 2013
Yu Lin Roderick Wong

In this paper, we study the asymptotics of the discrete Chebyshev polynomials tn(z,N) as the degree grows to infinity. Global asymptotic formulas are obtained as n → ∞, when the ratio of the parameters n/N = c is a constant in the interval (0, 1). Our method is based on a modified version of the Riemann-Hilbert approach first introduced by Deift and Zhou.

2009
JOHANN CIGLER JIANG ZENG

Two well-known q-Hermite polynomials are the continuous and discrete q-Hermite polynomials. In this paper we consider two new q-Hermite polynomials and prove several curious properties about these polynomials. One striking property is the connection with q-Fibonacci polynomials and the recent works on the combinatorics of the Matrix Ansatz of the PASEP.

Journal: :Eur. J. Comb. 2008
Charalambos A. Charalambides

A probabilistic interpretation of a modified Gegenbauer polynomial is furnished by its expression in terms of a combinatorial probability defined on a compound urn model. Also, a combinatorial interpretation of its coefficients is provided. In particular, probabilistic interpretations of a modified Chebyshev polynomial of the second kind and a modified Legendre polynomial together with combinat...

2011
Isabel Cação H. R. Malonek

An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.

2002
Sergey Kitaev Toufik Mansour

with given a, b, t0, t1 and n ≥ 0. This sequence was introduced by Horadam [3] in 1965, and it generalizes many sequences (see [1, 4]). Examples of such sequences are Fibonacci polynomials sequence (Fn(x))n≥0, Lucas polynomials sequence (Ln(x))n≥0, and Pell polynomials sequence (Pn(x))n≥0, when one has a = x, b = t1 = 1, t0 = 0; a = t1 = x, b = 1, t0 = 2; and a = 2x, b = t1 = 1, t0 = 0; respect...

Journal: :Discrete Mathematics 2011
Matthieu Josuat-Vergès Martin Rubey

Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain q-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulas for the moments of the q-Laguerre and the q-Charlier polynomials, in the style of the Touchard...

Journal: :Appl. Math. Lett. 2005
David O. Olagunju

We consider a fourth-order eigenvalue problem on a semi-infinite strip which arises in the study of viscoelastic shear flow. The eigenvalues and eigenfunctions are computed by a spectral method involving Laguerre functions and Legendre polynomials.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید