نتایج جستجو برای: cell penetrating peptides cpps
تعداد نتایج: 1750102 فیلتر نتایج به سال:
Cell-penetrating peptides (CPPs) enter cells primarily by escaping from endosomal compartments or by directly translocating across the plasma membrane. Due to their capability of permeating into the cytosolic space of the cell, CPPs are utilized for the delivery of cell-impermeable molecules. However, the fundamental mechanisms and parameters associated with the penetration of CPPs and their ca...
Many biologically active compounds, including macromolecules that are used as various kinds of drugs, must be delivered to the interior of cell or organelles such as mitochondria or nuclei to achieve a therapeutic effect. However, very often, lipophilic cell membrane is impermeable for these molecules. A new method in the transport of macromolecules through the cell membrane is the one based on...
Cell-penetrating peptides (CPPs) can cross cellular membranes in a non-toxic fashion, improving the intracellular delivery of various molecular cargos such as nanoparticles, small molecules and plasmid DNA. Because CPPs provide a safe, efficient, and non-invasive mode of transport for various cargos into cells, they have been developed as vectors for the delivery of genetic and biologic product...
Cell-penetrating peptides are short, often hydrophilic peptides that get access to the intracellular milieu. They have aroused great interest both in academic and applied research. First, cellular internalization of CPPs often involves the crossing of a biological membrane (plasma or vesicular), thus challenging the view of the non-permeability of these structures to large hydrophilic molecules...
The binding affinity of a series of cell-penetrating peptides (CPP) was modeled through docking and making use of the number of intermolecular hydrogen bonds, lipophilic contacts, and the number of sp3 molecular orbital hybridization carbons. The new ranking of the peptides is consistent with the experimentally determined efficiency in the downregulation of luciferase activity, which includes t...
Cell-penetrating peptides (CPPs) are able to be taken up by cells and can deliver macromolecular cargos. However, the mechanism of this internalization is not yet fully understood. Recent theories suggest that the binding of cationic CPPs to negatively charged extracellular glycosaminoglycans, such as heparan sulfate (HS), is a possible mechanism of cellular uptake (CU). Our group has screened ...
Many viral and nonviral systems have been developed to aid delivery of biologically active molecules into cells. Among these, cell-penetrating peptides (CPPs) have received increasing attention in the past two decades for biomedical applications. In this review, we focus on opportunities and challenges associated with CPP delivery of nucleic acids and nanomaterials. We first describe the nature...
Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclear. We describe the convergence of an HS-depende...
Quantum dots (QDs) are luminescent semiconductor nanocrystals that are widely used as fluorescent probes in biomedical applications, including cellular imaging and tumor tracking. Cell-penetrating peptides (CPPs), also called protein transduction domains (PTDs), are short basic peptides that permeate cell membranes and are able to deliver a variety of macromolecule cargoes, such as DNAs, RNAs, ...
Cell penetrating peptides (CPPs) have been developed as vehicles for payload delivery into cells in culture and in animals. However several biologic features limit their usefulness in living animals. Activatable cell penetrating peptides (ACPPs) are polycationic CPPs whose adsorption and cellular uptake are minimized by a covalently attached polyanionic inhibitory domain. Cleavage of the linker...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید