and Applied Analysis 3 2. Main Results and Proofs Lemma 2.1. For α α1, . . . , αn ∈ D, let uα z1, . . . , zn ∏n j 1 1 − |αj |2 / 1 − αjzj . Then uα z1, . . . , zn ∈ Lφa D , and ‖uα z ‖σn ≤ 1 φ−1 ∏n j 1 ( 1/δ2 j )) . 2.1 Proof. It is easy to see that ‖uα z ‖∞ ∏n j 1 1 |αj | / 1 − |αj | 2 ∏n j 1 2 − δj /δj . Since φ 0 0, the convexity of φ implies φ ax ≤ aφ x for 0 ≤ a ≤ 1. Hence, for every C > 0...