نتایج جستجو برای: bounded linear operator
تعداد نتایج: 615517 فیلتر نتایج به سال:
The notion of $k$-frames was recently introduced by Gu avruc ta in Hilbert spaces to study atomic systems with respect to a bounded linear operator. A continuous frame is a family of vectors in a Hilbert space which allows reproductions of arbitrary elements by continuous super positions. In this manuscript, we construct a continuous $k$-frame, so called c$k$-frame along with an atomic system ...
in this article, we have focused one some basic and productive information about the properties of spectrum and singular values related to compact operators which are ideals in a c*-algebra of bounded operators. considering a two-sided connection between the family of symmetric gauge functions on sequence of singular values of compact operators and symmetric norms on finite dimensional ope...
in this paper we introduce the concept of entropy operator for continuous systems of finite topological entropy. it is shown that it generates the kolmogorov entropy as a special case. if $phi$ is invertible then the entropy operator is bounded with the topological entropy of $phi$ as its norm.
Given bounded linear operators T1, T2 and T3, this paper investigates certain invariance properties of the operator product T1XT3 with respect to the choice of bounded linear operator X, where X is a generalized inverse of T2. Different types of generalized inverses are taken into account.
where A is the infinitesimal generator of the C0-semigroup T (t) on the state space X, B is a bounded linear operator from input space U to X, C is a bounded linear operator from X to the output space Y , and D is a bounded operator from U to Y . The spaces X, U and Y are assumed to be Banach spaces. More detail on the system (1) can be found in Curtain and Zwart [1]. For the system (1) we intr...
In this paper we get the formula for the condition number of the W -weighted Drazin inverse solution of a linear system WAWx = b, where A is a bounded linear operator between Hilbert spaces X and Y , W is a bounded linear operator between Hilbert spaces Y and X, x is an unknown vector in the range of (AW ) and b is a vector in the range of (WA). AMS Mathematics Subject Classification (2000): 47...
$K$-frames as a generalization of frames were introduced by L. Gu{a}vruc{t}a to study atomic systems on Hilbert spaces which allows, in a stable way, to reconstruct elements from the range of the bounded linear operator $K$ in a Hilbert space. Recently some generalizations of this concept are introduced and some of its difference with ordinary frames are studied. In this paper, we give a new ge...
Let X,Y be normed spaces. The set of bounded linear operators is noted as L(X,Y ). Let now D = D(A) ⊂ X be a linear subspace, and A : D −→ Y a linear (not necessarily bounded!) operator. Notation: (A,D(A)) : X −→ Y Definition: G(A) := {(x,Ax) |x ∈ D} is called the graph of A. Obviously, G(A) is a linear subspace of X × Y . The linear operator A is called closed if G(A) is closed in X × Y . The ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید