نتایج جستجو برای: boolean algebra
تعداد نتایج: 89146 فیلتر نتایج به سال:
Integral sets of finite groups are discussed and related to the integral Cayley graphs. The Boolean algebra of integral sets are determined for dihedral group and finite abelian groups. We characterize the finite abelian groups as those finite groups where the Boolean algebra generated by integral sets equals the Boolean algebra generated by its subgroups.
We show that there is a computable Boolean algebra B and a computably enu-merable ideal I of B such that the quotient algebra B=I is of Cantor{Bendixson rank 1 and is not isomorphic to any computable Boolean algebra. This extends a result of L. Feiner and is deduced from Feiner's result even though Feiner's construction yields a Boolean algebra of innnite Cantor{Bendixson rank.
We show that there is a computable Boolean algebra B and a computably enumerable ideal I of B such that the quotient algebra B=I is of Cantor{Bendixson rank 1 and is not isomorphic to any computable Boolean algebra. This extends a result of L. Feiner and is deduced from Feiner's result even though Feiner's construction yields a Boolean algebra of in nite Cantor{Bendixson rank.
A monadic (Boolean) algebra is a Boolean algebra A together with an operator 3 on A (called an existential quantifier, or, simply, a quantifier) such that 30=0, pfk 3p, and 3(^A 3q) = 3p* 3g whenever p and q are in A. Most of this note uses nothing more profound about monadic algebras than the definition. The reader interested in the motivation for and the basic facts in the theory of monadic a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید