نتایج جستجو برای: bidiagonalization procedure
تعداد نتایج: 616072 فیلتر نتایج به سال:
In this paper we propose a fast structure-preserving algorithm for computing the singular value decomposition of quaternion matrices. The algorithm is based on the structurepreserving bidiagonalization of the real counterpart for quaternion matrices by applying orthogonal JRS-symplectic matrices. The algorithm is efficient and numerically stable. 2014 Elsevier Inc. All rights reserved.
We develop probabilistic upper bounds for the matrix two-norm, the largest singular value. These bounds, which are true upper bounds with a userchosen high probability, are derived with a number of different polynomials that implicitly arise in the Lanczos bidiagonalization process. Since these polynomials are adaptively generated, the bounds typically give very good results. They can be comput...
This paper discusses the implementation and evaluation of the reduction of a dense matrix to bidiagonal form on the Trident processor. The standard Golub and Kahan Householder bidiagonalization algorithm, which is rich in matrix-vector operations, and the LAPACK subroutine _GEBRD, which is rich in a mixture of vector, matrix-vector, and matrix operations, are simulated on the Trident processor....
Many numerical methods for the solution of linear ill-posed problems apply Tikhonov regularization. This paper presents a modification of a numerical method proposed by Golub and von Matt for quadratically constrained least-squares problems and applies it to Tikhonov regularization of large-scale linear discrete ill-posed problems. The method is based on partial Lanczos bidiagonalization and Ga...
We study an inexact inner–outer generalized Golub–Kahan algorithm for the solution of saddle-point problems with a two-times-two block structure. In each outer iteration, inner system has to be solved which in theory done exactly. Whenever is getting large, exact solver is, however, no longer efficient or even feasible and iterative methods must used. focus this article on numerical showing inf...
PURPOSE Developing a computationally efficient automated method for the optimal choice of regularization parameter in diffuse optical tomography. METHODS The least-squares QR (LSQR)-type method that uses Lanczos bidiagonalization is known to be computationally efficient in performing the reconstruction procedure in diffuse optical tomography. The same is effectively deployed via an optimizati...
The main purpose of this paper is to show that linear least squares methods based on bidiagonalization, namely the LSQR algorithm, can be used for generation of trust region path. This property is a basis for an inexact trust region method which uses the LSQR algorithm for direction determination. This method is very efficient for large sparse nonlinear least squares as it is supported by numer...
We develop numerical algorithms for the efficient evaluation of quantities associated with generalized matrix functions [J. B. Hawkins and A. Ben-Israel, Linear and Multilinear Algebra, 1(2), 1973, pp. 163–171]. Our algorithms are based on Gaussian quadrature and Golub–Kahan bidiagonalization. Block variants are also investigated. Numerical experiments are performed to illustrate the effectiven...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید