نتایج جستجو برای: auto associative neural networks
تعداد نتایج: 676536 فیلتر نتایج به سال:
A novel online Compromised Device Identification System (CDIS) is presented to identify IoT devices and/or IP addresses that are compromised by a Botnet attack, within set of sources and destinations transmit packets. The method uses specific metrics selected for this purpose which easily extracted from network traffic, trains itself during normal operation with an Auto-Associative Dense Random...
medium 250 words) Many researchers agree on the basic architecture of the "world model" where knowledge about the world required for organization of agent's intelligent behavior is represented. However, most proposals on possible implementation of such a model are far from being plausible both from computational and neurobiological points of view. Implementation ideas based on distributed conne...
in general, energy prices, such as those of crude oil, are affected by deterministic events such as seasonal changes as well as non-deterministic events such as geopolitical events. it is the non-deterministic events which cause the prices to vary randomly and makes price prediction a difficult task. one could argue that these random changes act like noise which effects the deterministic variat...
rivers and runoff have always been of interest to human beings. in order to make use of the proper water resources, human societies, industrial and agricultural centers, etc. have usually been established near rivers. as the time goes on, these societies developed, and therefore water resources were extracted more and more. consequently, conditions of water quality of the rivers experienced rap...
Standard connectionist models of pattern completion like an auto-associator, typically fill in the activation of a missing feature with internal input from nodes that are connected to it. However, associative studies on competition between alternative causes, demonstrate that people do not always complete the activation of a missing feature, but rather actively encode it as missing whenever its...
This paper proposes a neural network classifier which can automatically detect the occluded regions in the given image and replace that regions with the estimated values. An auto-associative memory is used to detect outliers such as pixels in the occluded regions. Certainties of each pixels are estimated by comparing the input pixels with the outputs of the auto-associative memory. The input va...
We consider the problem of learning from examples in layered linear feed-forward neural networks using optimization methods, such as back propagation, with respect to the usual quadratic error function E of the connection weights. Our main result is a complete description of the landscape attached to E in terms of principal component analysis. We show that E has a unique minimum corresponding t...
Intrusion Detection Systems (IDS’s) monitor the traffic in computer networks for detecting suspect activities. Connectionist techniques can support the development of IDS’s by modeling ‘normal’ traffic. This paper presents the application of some unsupervised neural methods to a packet dataset for the first time. This work considers three unsupervised neural methods, namely, Vector Quantization...
377 We describe two expriments in optical neural computing. In the first a closed optical feedback loop is used to implement auto-associative image recall. In the second a perceptron-Iike learning algorithm is implemented with photorefractive holography.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید