نتایج جستجو برای: archimedean normed space
تعداد نتایج: 498260 فیلتر نتایج به سال:
In this paper, we introduce the concepts of $2$-isometry, collinearity, $2$%-Lipschitz mapping in $2$-fuzzy $2$-normed linear spaces. Also, we give anew generalization of the Mazur-Ulam theorem when $X$ is a $2$-fuzzy $2$%-normed linear space or $Im (X)$ is a fuzzy $2$-normed linear space, thatis, the Mazur-Ulam theorem holds, when the $2$-isometry mapped to a $2$%-fuzzy $2$-normed linear space...
and Applied Analysis 3 with f 0 0 in a non-Archimedean space. It is easy to see that the function f x ax bx2 is a solution of the functional equation 1.8 , which explains why it is called additive-quadratic functional equation. For more detailed definitions of mixed type functional equations, we can refer to 26–47 . Definition 1.1 see 48 . Let X be a real vector space. A function N : X × R → 0,...
The aim of this paper is to introduce the concepts of compatible mappings and compatible mappings of type (R) in non-Archimedean Menger probabilistic normed spaces and to study the existence problems of common fixed points for compatible mappings of type (R), also, we give an applications by using the main theorems.
In this paper, we prove the generalized Hyres–Ulam–Rassias stability of the mixed type cubic and quartic functional equation f (x + 2y) + f (x − 2y) = 4(f (x + y) + f (x − y)) − 24f (y) − 6f (x) + 3f (2y) in non-Archimedean ℓ-fuzzy normed spaces.
In this paper, we prove the stability of the functional equation ∑ 1 i, j n,i = j ( f (xi + x j)+ f (xi − x j) ) = (n−1) n ∑ i=1 ( 3 f (xi)+ f (−xi) ) in non-Archimedean normed spaces. Mathematics subject classification (2010): 39B82, 46S10, 39B52.
In this paper, we investigate the generalized Hyers–Ulam stability for the functional equation f(ax+y)+af(y−x)− a(a+ 1) 2 f(x)− a(a+ 1) 2 f(−x)− (a+1)f(y) = 0 in non-Archimedean normed spaces. Mathematics Subject Classification: 39B52, 39B82
In this paper, we obtain the general solution and investigate the Hyers-Ulam-Rassias stability of the functional equation f(ax− y)± af(x± y) = (a± 1)[af(x)± f(y)] in non-Archimedean -fuzzy normed spaces. Mathematics Subject Classification: 39B55, 39B52, 39B82
A short review on infinite-dimensional Grassmann-Banach algebras (IDGBA) is presented. Starting with the simplest IDGBA over K = R with l 1-norm (suggested by A. Rogers), we define a more general IDGBA over complete normed field K with l 1-norm and set of generators of arbitrary power. Any l 1-type IDGBA may be obtained by action of Grassmann-Banach functor of projective type on certain l 1-spa...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید