نتایج جستجو برای: archimedean mathbb z rings
تعداد نتایج: 206321 فیلتر نتایج به سال:
We show that every Dedekind domain $R$ lying between the polynomial rings $\mathbb Z[X]$ and Q[X]$ with property its residue fields of prime characteristic are finite is equal to a generalized ring integer-valued polynomials, is, for each $p\in\mathbb Z$ there exists subset $E_p$ transcendental elements over Q$ in absolute integral closure $\overline{\mathbb Z_p}$ $p$-adic integers such $R=\{f\...
Let $R$ be a finite commutative ring with unity and $x\in R$. We study the probability that product of two randomly chosen elements (with replacement) equals $x$. denote this by $Prob_x (R)$. determine some bounds for also obtain characterizations rings based on probability. Moreover, we explicit computing formulas (R)$ when $R=\mathbb{Z}_m\times \mathbb{Z}_n$.
Let $R$ be a commutative ring with identity and $mathbb{A}(R)$ be the set of ideals of $R$ with non-zero annihilators. In this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $R$, denoted by $mathbb{AG}_P(R)$. It is a (undirected) graph with vertices $mathbb{A}_P(R)=mathbb{A}(R)cap mathbb{P}(R)setminus {(0)}$, where $mathbb{P}(R)$ is...
let $g$ be a non-abelian finite group. in this paper, we prove that $gamma(g)$ is $k_4$-free if and only if $g cong a times p$, where $a$ is an abelian group, $p$ is a $2$-group and $g/z(g) cong mathbb{ z}_2 times mathbb{z}_2$. also, we show that $gamma(g)$ is $k_{1,3}$-free if and only if $g cong {mathbb{s}}_3,~d_8$ or $q_8$.
Ngcibi, Murali and Makamba [Fuzzy subgroups of rank two abelian$p$-group, Iranian J. of Fuzzy Systems {bf 7} (2010), 149-153]considered the number of fuzzy subgroups of a finite abelian$p$-group $mathbb{Z}_{p^m}times mathbb{Z}_{p^n}$ of rank two, andgave explicit formulas for the cases when $m$ is any positiveinteger and $n=1,2,3$. Even though their method can be used for thecases when $n=4,5,l...
We define an integral domain D to be anti-Archimedean if ⋂∞ n=1 a nD 6= 0 for each 0 6= a ∈ D. For example, a valuation domain or SFT Prüfer domain is anti-Archimedean if and only if it has no height-one prime ideals. A number of constructions and stability results for anti-Archimedean domains are given. We show that D is anti-Archimedean ⇔ D[[X1, . . .
let $r$ be a commutative ring with identity and $mathbb{a}(r)$ be the set of ideals of $r$ with non-zero annihilators. in this paper, we first introduce and investigate the principal ideal subgraph of the annihilating-ideal graph of $r$, denoted by $mathbb{ag}_p(r)$. it is a (undirected) graph with vertices $mathbb{a}_p(r)=mathbb{a}(r)cap mathbb{p}(r)setminus {(0)}$, where $mathbb{p}(r)$ is...
The undirected power graph of a finite group $G$, $P(G)$, is a graph with the group elements of $G$ as vertices and two vertices are adjacent if and only if one of them is a power of the other. Let $A$ be an adjacency matrix of $P(G)$. An eigenvalue $lambda$ of $A$ is a main eigenvalue if the eigenspace $epsilon(lambda)$ has an eigenvector $X$ such that $X^{t}jjneq 0$, where $jj$ is the all-one...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید