نتایج جستجو برای: absolute value equation levenberg marquardt approach conjugate subgradient
تعداد نتایج: 2197530 فیلتر نتایج به سال:
In this article we deal with the determination of a diffusion coefficient function in a quasi-linear parabolic system. The motivation comes from a metallurgy setting. The solution method is based on the output least-squares approach (ols) with minimization applying the adjoint equation. As the diffusion coefficient has an a-priori unknown form, we apply freeform determination in which the coeff...
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
Back propagation neural network (BPNN) algorithm is a widely used technique in training artificial neural networks. It is also a very popular optimization procedure applied to find optimal weights in a training process. However, traditional back propagation optimized with Levenberg marquardt training algorithm has some drawbacks such as getting stuck in local minima, and network stagnancy. This...
Due to the rapid growth in technology employed by the spammers, there is a need of classifiers that are more efficient, generic and highly adaptive. Neural Network based technologies have high ability of adaption as well as generalization. As per our knowledge, very little work has been done in this field using neural network. We present this paper to fill this gap. This paper evaluates perform...
Financial forecasting is an example of signal processing problems. A number of ways to train/learn the network are available. We have used Levenberg-Marquardt algorithm for error back-propagation for weight adjustment. Pre-processing of data has reduced much of the variation at large scale to small scale, reducing the variation of training data. Keywords— Gradient descent method, jacobian matri...
The problem is considered of the estimation of a polygonal region in two dimensions from data approximately marking the outline of the region. A solution is sought by formulating and solving a nonlinear least squares problem. A Levenberg–Marquardt method is developed for this problem, with an implementation which exploits the special structure so that the Levenberg–Marquardt step can be compute...
A new algorithm for the solution of large-scale nonlinear complementarity problems is introduced. The algorithm is based on a nonsmooth equation reformulation of the complementarity problem and on an inexact Levenberg-Marquardt-type algorithm for its solution. Under mild assumptions, and requiring only the approximate solution of a linear system at each iteration, the algorithm is shown to be b...
Materials and methods: A data set consisting of 584 stroke patients was analyzed using MLP neural networks. Th e eff ect of prognostic factors (age, hospitalization time, sex, hypertension, atrial fi brillation, embolism, stroke type, infection, diabetes mellitus, and ischemic heart disease) on mortality in stroke were trained with 6 diff erent MLP algorithms [quick propagation (QP), Levenberg-...
In this paper, performance of three classifiers for classification of five mental tasks were investigated. Wavelet Packet Transform (WPT) was used for feature extraction of the relevant frequency bands from raw Electroencephalograph (EEG) signal. The three classifiers namely used were Multilayer Back propagation Neural Network, Support Vector Machine and Radial Basis Function Neural Network. In...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید