نتایج جستجو برای: گراف k
تعداد نتایج: 379715 فیلتر نتایج به سال:
افراز کراوز گراف g عبارت است از افراز مجموعه ی یال e(g) به زیرگراف کامل که آنها را خوشه نیز گویند. تعداد خوشه ها شامل راس v را مرتبه v گویند و مرتبه ی افراز را بیشترین مرتبه ی همه رئوس g می نامند. بعد کراوز g به صورت کوچکترین مرتبه ی افراز روی همه ی افرازهای کراوز g تعریف شده است.و با نماد dim(g) نمایش می دهند.توجه کنید که اگر g همبند نباشد در این صورت بعد آن بیشترین بعد تحت همه ی مولفه های آن...
در این پایان نامه پوشش های هندسی نیرومند مورد مطالعه قرار می گیرد. فرض کنید f یک تابع صعودی، مثبت و دلخواه، k>0 یک عدد صحیح و t>1یک عدد حقیقی باشد. گراف g=(v, e) یک -t پوشش -f(k) نیرومند بر روی مجموعه نقاط v است، در صورتی که به ازای هر زیرمجموعه ی دلخواه s شامل k رأس از مجموعه رأس های v یک مجموعه ی s^+ از مجموعه رأس های v و شامل s به اندازه حداکثر f(k) وجود د...
یکی از راه های مطالعه ی گراف ها بررسی چندجمله ای هایی است که به آن ها نسبت داده می شوند. تاکنون چندجمله ای های گوناگونی به گراف ها نسبت داده شده اند و مورد بررسی و مطالعه قرار گرفته اند. برای نمونه می توان به چندجمله ای های رنگی، چندجمله ای های غالب و چندجمله ای های استقلال اشاره کرد. یک مجموعه ی استقلال از گراف $ g $، عبارت است از یک زیر مجموعه ی $ s $ از مجموعه رئوس گراف $ g $، به طو...
فرض کنید g گرافی n رأسی باشد. مقادیر ویژ? لاپلاسین بدون علامت و لاپلاسین g که به صورت نزولی مرتب شده اند را به ترتیب با q_1 (g)???q_n (g)?0 و ?_1 (g)????_(n-1) (g)??_n (g)=0, نمایش می¬دهیم. حدسی در مورد مقادیر ویژ? لاپلاسین گراف¬ها بیان می کند که ?_1 (g)-?_(n-1) (g)?n-1 یا به طورمعادل ?_1 (g)+?_1 (¯g)?2n-1 که در آن ¯g گراف مکمل g است. در این رساله، این حدس را برای گراف¬های دوبخشی ثابت می¬کن...
رنگ آمیزی برداری متعامد گراف ها چکیده فرض کنید f یک میدان ، s ، a ، b و c زیرمجموعه هایی از f ، d یک عدد صحیح مثبت و تابع f (x , y) یک فرم دوخطی ناتبهگون روی باشد ، یک نمایش برداری از گراف ساده g با رأس های , … , عبارت است از لیست بردارهای , … , متعلق به به طوری که بردار به رأس تخصیص داده شود ، مولفه های هر بردار در s قرار گیرد ، برای هر i و j ،a f ( , ) ، اگر با در g مجاور باشد ، آن گاهb f (...
برای یک رنگ آمیزی یالی داده شده با رنگ های {1,2,...,k}، یک رنگ آمیزی راسی از گراف g با رنگ های {1,2,...,k} را سازگار با رنگ آمیزی یالی می گوییم هرگاه برای هر یال از g، رنگ های ظاهر شده روی دو سر آن و رنگ خود یال یکسان نباشند. به کوچکترین k ای که برای هر رنگ آمیزی یالی با kـ رنگ {1,2,...,k} یک رنگ آمیزی سازگار با این رنگ آمیزی یالی و با استفاده از رنگ های{1...
چکیده ی فارسی یک رنگ آمیزی رأسی سره از گراف g را یک bرنگ آمیزی از گراف g می نامند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. هر رنگ آمیزی از گراف g با chi(g) رنگ، یک bرنگ آمیزی از g است. به بزرگ ترین عدد طبیعی k که یک bرنگ آمیزی از گراف g با k رنگ وجود داشته باشد، عدد b رنگی گرافg می گویند و آن را با phi (g) نمایش می دهند. گ...
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
چکیده گراف یالی ابرگراف h گرافی است که مجموعه رأس هایش، خانواده ابریال های h است و دو رأس آن مجاور هستند اگروفقط اگر ابریال های متناظرشان در h دارای اشتراک ناتهی باشند. گراف یالی با l(h) نمایش داده می شود. همچنین کلاس گراف های یالی ابرگراف های k-یکنواخت را با lk و کلاس گراف های یالی ابرگراف های k-یکنواخت خطی را با lkl نشان می دهیم. بینکه کلاس l2l را با استفاده از یک لیست متناهی متشکل از زیرگ...
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید