نتایج جستجو برای: گام mcmc

تعداد نتایج: 21212  

2002
WILLIAM A. LINK

Markov chain Monte Carlo (MCMC) is a statistical innovation methodology that allows researchers to fit far more complex models to data than is feasible using conventional methods. Despite its widespread use in a variety of scientific fields, MCMC appears to be underutilized in wildlife applications. This may be due to a misconception that MCMC requires the adoption of a subjective Bayesian anal...

Journal: :Statistics and Computing 2016
Paul Fearnhead Loukia Meligkotsidou

Particle MCMC involves using a particle filter within an MCMC algorithm. For inference of a model which involves an unobserved stochastic process, the standard implementation uses the particle filter to propose new values for the stochastic process, and MCMC moves to propose new values for the parameters. We show how particle MCMC can be generalised beyond this. Our key idea is to introduce new...

Journal: :Journal of Computational Physics 2016

Journal: :Stochastics and Dynamics 2008

Journal: :EURASIP Journal on Advances in Signal Processing 2018

2016
Sungsoo Ahn Michael Chertkov Jinwoo Shin

Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of ac...

Journal: :Computers, Environment and Urban Systems 2021

Cellular automata (CA) models have increasingly been used to simulate land use/cover changes (LUCC). Metaheuristic optimization algorithms such as particle swarm (PSO) and genetic algorithm (GA) recently introduced into CA frameworks generate more accurate simulations. Although Markov Chain Monte Carlo (MCMC) is simpler than PSO GA, it rarely calibrate models. In this article, we introduce a no...

2007
Fabien Campillo Philippe Cantet Rivo Rakotozafy Vivien Rossi

RÉSUMÉ. Les méthodes de Monte Carlo par chaînes de Markov (MCMC) couplées à des modèles de Markov cachés sont utilisées dans de nombreux domaines, notamment en environnement et en écologie. Sur des exemples simples, nous montrons que la vitesse de convergence de ces méthodes peut être très faible. Nous proposons de mettre en interaction plusieurs algorithmes MCMC pour accélérer cette convergenc...

Journal: :CoRR 2016
Sungsoo Ahn Michael Chertkov Jinwoo Shin

Markov Chain Monte Carlo (MCMC) and Belief Propagation (BP) are the most popular algorithms for computational inference in Graphical Models (GM). In principle, MCMC is an exact probabilistic method which, however, often suffers from exponentially slow mixing. In contrast, BP is a deterministic method, which is typically fast, empirically very successful, however in general lacking control of ac...

2015
Biswa Sengupta Karl J. Friston William D. Penny

In this technical note we compare the performance of four gradient-free MCMC samplers (random walk Metropolis sampling, slice-sampling, adaptive MCMC sampling and population-based MCMC sampling with tempering) in terms of the number of independent samples they can produce per unit computational time. For the Bayesian inversion of a single-node neural mass model, both adaptive and population-bas...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید