نتایج جستجو برای: چندگونایجبرهای باناخ فضای متری فشرده شامل تمام چندگوناها هسته iq
تعداد نتایج: 229003 فیلتر نتایج به سال:
به طور کلی، هر سلول طبیعی بدن انسان، که مشتمل بر قسمتهای مختلفی همچون هسته، غشاء سلولی و نانوالیاف پروتئینی میباشد، دارای سختی استحکام مکانیکی مشخصی است. هرگونه تغییر محسوس در این استحکام، نشان از یک بیماری دارد. یکی راههای تشخیص بیماریهای مختلف سرطان های سنجش میزان تغییرات رخ داده خواص آنها میباشد. مقالۀ حاضر، مشخصات شامل مدول الاستیسیته نیروی چسبندگی Ago-1522 سلولهای پوست محسوب میشود،...
در سال 1972 جانسون نظریه جبرهای باناخ میانگین پذیر را معرفی کرد و این سوال را مطرح کرد که آیا جبر باناخ شامل همه عملگرهای خطی کراندار روی فضای باناخ نامتناهی بعد می تواند میانگین پذیر باشد.به طور شگفت انگیزی اخیرا به این سوال پاسخ مثبت داده شد. تلفیق نتایج آرگیروس-هایدون که بر مساله جبر عملگرهای فشرده یکدار شده می پردازد این مساله را حل کرد.
خاصیت تخمین محدب فضاهای باناخ را به منظور بدست آوردن روشی یکپارچه برای خواص تخمین مختلف شامل، انواع کلاسیک آن، نظیر، خاصیت تخمین مثبت شبکه های باناخ و خاصیت تخمین دوتایی هایی از فضاهای باناخ مطالعه می کنیم. هدف اصلی ما با ترفیع خواص تخمین متریک و متریک ضعیف فضاهای باناخ به فضای دوگانشان در ارتیاط است. به عنوان کاربردی آسان،این گزاره که بدست می آید که اگر x^* یا x^** دارای خاصیت رادون-نیکودیم با...
فرض کنید g یک گروه آبلی موضعاً فشرده با اندازه ی هار و x یک فضای باناخ و a یک جبر باناخ جابه جایی x- مدول باشد. هم چنین فرض کنید یک تابع وزن بر روی g باشد. در این پایان نامه ابتدا جبر باناخ ، و را برای درنظر گرفته سپس مضارب بر روی آنها را مورد بررسی قرار می دهیم. واژه های کلیدی: گروه آبلی موضعاً فشرده ، جبر باناخ ، مضارب ، وزن
آنچه در این پایان نامه حائز اهمیت می باشد شناسایی ایدالها در برخی جبرهای باناخ است. در صورتی که g یک گروه فشرده موضعی آبلی باشد می توان تمام ایدال های چپ مینیمال را در دوگان اول مجموعه تمام توابع مختلط مقدار و پیوسته یکنواخت چپ و همچنین در فضای دوگان اول مجموعه توابع تقریبا همه جا کراندار، شناسایی کرد. به علاوه برخی ایدال های راست مینیمال و ماکزیمال نیز قابل شناسایی هستند. ابزار مطالعه آنها مجم...
مفهوم میانگین پذیری در سال1904با طرح این سوال از لبگ آغاز شدکه آیا تابع با مجموعه ی متناهی جمع پذیر که تحت یک عمل معین گروه پایا باشد وجود دارد؟ در سال 1929مفهوم میانگین پذیری توسط جان فون نویمن در مورد اندازه های جمع پذیر روی زیر مجموعه های یک گروه موضعا فشرده در رابطه با پارادوکس باناخ – تاراسکی ارائه شد . در سال 1972 یک نتیجه اساسی توسط جانسون برای گروه موضعا فشرده g بدست آمد به این صورت که...
در این مقاله، مسائل بهینه سازی شامل تعداد نامتناهی قید نامساوی در یک فضای باناخ مورد بررسی و مطالعه قرار گرفته است. این دسته مسائل به گونه ای است که تابع هدف و تمامی توابع فید در نزدیکی نقطه بهینه به طور موضعی لیپ شیتز هستند. هدف، ارائه شرایط لازم بهینگی و بررسی شرایط نظم پذیری برای مسائل فوق، توسط زیرمشتق میشل-پینت است.
در این رساله ما تعریف جدیدی از فضای فوریه روی یک ابرگروه فشرده ی موضعی ارایه می دهیم و ثابت می کنیم که آن یک زیرفضای باناخ از جبر فوریه – استیلیس روی آن ابرگروه است. این تعریف باتعریف امینی و مدقالچی هنگامیکه ابرگروه مورد نظر یک ابرگروه تانسوری باشد منطبق است و همچنین با تعریف رم که تنها برای ابرگروه های فشرده می باشد انطباق دارد. ثابت می کنیم که دوگان جبر فوریه روی یک ابرگروه برابر است با جبر ...
دراین پایان نامه ابتداتبدیل گلفاندفشرده جبرهای باناخ تعویضپذیررامعرفی وبرخی ازخواص آن رابیان میکنیم.سپس یک شرط کافی برای فشردگی تبدیل گلفاند جبرهای تابعی باناخ بدست می آوریم.همچنین یک شرط لازم وکافی برای فشردگی تبدیل گلفاند یک جبر تابعی باناخ طبیعی ارائه میدهیم.درادامه،نشان میدهیم که ضرب تانسوری تصویری دوجبر باناخ باتبدیل گلفاندفشرده،یک جبرباناخ باتبدیل گلفاندفشرده است.بعلاوه،اگرضرب تانسوری تصو...
در این پایان نامه که مشتمل بر چهار فصل می باشد سعی بر این است مباحثی در مورد پایه ها در فضای هیلبرت و باناخ، قاب ها و ارتباط قاب ها و پایه های ریس مطرح شود. در فصل اول مقدماتی که شامل تعاریف و قضایای لازم است ، آورده شده است. در فصل دوم ابتدا تعریف پایه در فضای باناخ آورده شده است و پس از آن مطالبی در مورد پایه های هیلبرتی ، بسلی، ریس و شادر در فضای هیلبرت عنوان می شود. فصل سوم که در واقع مهمتر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید