نتایج جستجو برای: پرسپترون چندلایه شبکه عصبی مصنوعی

تعداد نتایج: 49224  

جواد خوشحال دستجردی سیدمحمد حسینی

 اربرد شبکه عصبی مصنوعی در شبیه‌سازی عناصر اقلیمی و پیش‌بینی سیکل خشکسالی ) مطالعه موردی: استان اصفهان( چکیده   در این­ پژوهش، از شبکه­های عصبی مصنوعی ( Artificial Neural Networks ) به عنوان ابزاری توانمند در مدل سازی فرآیندهای غیرخطی و نامعین، به منظور پیش­بینی سیکل خشکسالی در20 ایستگاه سینوپتیک، کلیماتولوژی و هیدرومتری استان اصفهان که حداقل20 سال آمار روزانه داشتند، استفاده شد. از نرم­افزار M...

ژورنال: :مجله دانش علف های هرز ایران 2014
سحر منصوریان ابراهیم ایزدی دربندی محمدحسن راشد محصل مهدی راستگو همایون کانونی

به منظور مقایسه توانایی مدل های شبکه عصبی مصنوعی با رگرسیون لجستیک در پیش بینی حضور علف های هرز، آزمایشی در 33 مزرعه نخود دیم استان کردستان در سال زراعی 92-1391 انجام شد. برای این منظور، اطلاعات اقلیمی و خاکی به عنوان متغیرهای مستقل و حضور و عدم حضور علف های هرز غالب به عنوان متغیرهای وابسته در مدل های رگرسیون لجستیک و شبکه عصبی مصنوعی استفاده شدند. در این تحقیق از شبکه پرسپترون چندلایه با نه ن...

ژورنال: :مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران 0
محمود اکبریان mahmoud akbarian rheumatology research center, tehran university of medical sciences, tehran, iran.مرکز تحقیقات روماتولوژی، دانشگاه علوم پزشکی تهران خدیجه پایدار khadijeh paydar department of health information management, school of allied medical sciences, tehran university of medical sciences, tehran, iran.گروه مدیریت اطلاعات سلامت، دانشکده پیراپزشکی، دانشگاه علوم پزشکی تهرانن شراره رستم نیاکان کلهری sharareh r ostam niakan kalhori department of public health, school of public health, ahvaz jundishapur university of medical sciences, ahvaz, iran.گروه بهداشت عمومی، دانشکده بهداشت، دانشگاه علوم پزشکی جندی شاپور اهواز عباس شیخ طاهری abbas sheikhtaheri yasmi st., valiasr ave., tehran, iran. tel: +98- 21- 88794302تهران، خیابان ولیعصر، بالاتر از ونک، خیابان شهید یاسمی، دانشکده مدیریت و اطلاع رسانی پزشکی تلفن: 88794302 -021

زمینه و هدف: لوپوس اریتماتوی سیستمیک (sle) بیماری خودایمنی چند سیستمی با تظاهرات متنوع و رفتار متغیر می باشد. بارداری برای زنان با sle به عنوان چالش مطرح است. مشاوره پیش از بارداری به دلیل برآورد ریسک نتایج نامطلوب در مادر و جنین با استفاده از داده های مناسب ضروری است. هدف این مطالعه، طراحی شبکه عصبی مصنوعی برای پیش بینی نتایج حاملگی در زنان باردار لوپوسی بود. روش بررسی: در این بررسی گذشته نگر،...

حسین صمدی بروجنی حیدر زارعی, رضا زمانی احمدمحمودی, علی محمد آخوندعلی

     از اساسی­ترین موارد در مدیریت کمی منابع آب زیرزمینی تخمین سطح آب با استفاده از داده­های برداشت شده از شبکه چاه­های مشاهده­ای می­باشد. هدف این تحقیق میان­یابی سطح آب­زیرزمینی با استفاده از الگوریتم ترکیبی زمین آمار و شبکه­های عصبی مصنوعی می­باشد و دشت شهرکرد به عنوان نمونه انتخاب شده است. بعد ازانتخاب دو ماه اسفند 1385 و شهریور 1388 به عنوان ماه­های دارای به ترتیب حداکثر و حداقل سطح آب (طی ...

در کشاورزی امروزی، نقش گلخانه به عنوان ابزاری برای افزایش کمیت و کیفیت محصول، دارای اهمیت فراوان می­باشد. شرایط داخلی گلخانه به برخی  عوامل بیرونی وابسته است که به­طور معمول پیش­بینی دقیق آن­ها به سادگی امکان پذیر نیست. هدف از اجرای این تحقیق، تخمین دمای هوای داخل گلخانه در حالت­های بدون تهویه و با استفاده از سامانه­ی سرماش تبخیری با روش شبکه عصبی مصنوعی و مدل رگرسیونی است. از برخی عوامل مانند ...

در این تحقیق که در جنگل‌های رامسر در استان مازندران انجام شد رویش جنگل به کمک شبکه­ عصبی مصنوعی برآورد و با رویش واقعی جنگل که به­طور مستقیم و از اندازه­گیری در 20 قطعه‌نمونه ثابت یک هکتاری که در سال­های 1381 و 1391 از آماربرداری صد­در­صد محاسبه شده بود، مقایسه شد. رویش حجمی سالانه راش به­ترتیب 52/4 و 35/4 سیلو در هکتار برای رویش به طریق مستقیم و رویش برآوردی به روش شبکه عصبی مصنوعی بود. سپس تح...

خشک‌سالی یکی از پدیده‌های آب و هوایی است که در همه شرایط اقلیمی و در همه مناطق کره زمین به وقوع می‌پیوندد. پیش‌بینی خشک‌سالی نقش مهمی در طراحی و مدیریت منابع طبیعی، سیستم‌های منابع آب، تعیین نیاز آبی گیاه و... ایفا می‌نماید. در طی دهه‌های اخیر شبکه‌های عصبی توانایی‌های زیادی را در مدل‌سازی و پیش‌بینی سری‌های زمانی غیرخطی و غیرایستا نشان داده‌اند. از این‌رو، در این تحقیق به‌منظور پیش‌بینی خشک‌سا...

ژورنال: :نشریه محیط زیست و مهندسی آب 2015
همایون فقیه عطا امینی فرزانه حیدری کیوان خلیلی

بار رسوب جریان، شاخص مفیدی در پیش­بینی فرسایش خاک در حوزه­های آبخیز است؛ بنابراین تدوین مدلی برای برآورد بار رسوب می­تواند در مدیریت و اجرای پروژه­های آبخیزداری و مهندسی رودخانه مفید باشد. در این پژوهش روش دسته­بندی داده­ها به­عنوان راه­کاری برای افزایش دقت شبکه عصبی مصنوعی در تدوین مدل برآورد رسوب معلق بررسی شد. بدین منظور، میزان آورد رسوبات معلق رودخانه­های خلیفه­ترخان و چهل­گزی در حوضۀ قشلاق...

ژورنال: :مجله محیط زیست و مهندسی آب 0
سهیلا پناهی دانشجوی کارشناسی ارشد، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران مسعود کرباسی استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران جعفر نیکبخت دانشیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه زنجان، زنجان، ایران

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم ترین مؤلفه ها در بهینه سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش بینی تبخیر-تعرق مرجع روزانه و هفتگی می تواند در پیش بینی نیاز آبی گیاهان و برنامه ریزی کوتاه مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی mlp(پرسپترون چندلایه)، rbf (شبکه تابع پایه ای شعاعی)، svm (ماشین بردار پشتیبان) در پیش بینی تبخیر-تعرق م...

تخمین تبخیر-تعرق گیاه مرجع یکی از مهم‌ترین مؤلفه‌ها در بهینه‌سازی مصرف آب کشاورزی و مدیریت منابع آب است. پیش‌بینی تبخیر-تعرق مرجع روزانه و هفتگی می‌تواند در پیش‌بینی نیاز آبی گیاهان و برنامه‌ریزی کوتاه‌مدت آبیاری مورداستفاده قرار گیرد. هدف از این تحقیق، ارزیابی عملکرد سه نوع شبکه عصبی مصنوعی MLP(پرسپترون چندلایه)، RBF (شبکه تابع پایه‌ای شعاعی)، SVM (ماشین بردار پشتیبان) در پیش‌بینی تبخیر-تعرق م...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید