نتایج جستجو برای: نگاشت انقباضی احتمالی غیر خطی
تعداد نتایج: 104993 فیلتر نتایج به سال:
در این پایان نامه یک قضیه نقطه ثابت مشترک را با استفاده از مفهوم نگاشت های جابجایی r-ضعیف برای یک جفت از نگاشت های ناسازگار،بدون استفاده از کامل بودن فضا و پیوستگی نگاشت های بکار رفته بررسی می کنیم.
در فصل اول به ارائه ی برخی از تعاریف و قضایای مقدماتی که در فصل های بعدی از آن ها استفاده می شود، می پردازیم. سپس در فصل دوم ضمن ارائه ی روش تکراری برای یافتن عنصر مشترک از مجموعه جواب های مسئله ی تعادل و مجموعه نقاط ثابت یک نگاشت شبه انقباضی اکید در زمینه ی فضای هیلبرت حقیقی، به تقریبی کردن این مفاهیم می پردازیم. در فصل سوم یک روش تکراری جدید بر اساس روش ضریب زاویه برای پیدا کردن عنصر مشترک از...
فضای متریک مخروطی تعمیمی از فضای متریک معمولی می باشد که در قرن بیستم معرفی شده است. تا کنون قضایای نقطه ثابت و نقطه ثابت مشترک متعددی در فضای متریک مخروطی اثبات و ارائه شده است. در این پایان نامه با جایگزین کردن فضای برداری توپولوژیک به جای فضای باناخ حقیقی در مجموعه مقدار متر مخروطی, تعمیمی از فضای متریک مخروطی را بیان می کنیم که با عنوان فضای متریک مخروطی برداری توپولوژیک معرفی گردیده...
در این پایان نامه فضای متریک مخروطی (x,d) که تعمیمی از فضای متریک است و با جایگزینی فضای باناخ مرتب به جای مجموعه اعداد حقیقی تعریف می شود را معرفی کرده و به بررسی همگرایی دنباله ها در این فضا می پردازیم. همجنین درمورد قضایای نقطه ثابت روی نگاش ت های انقباض با شرط نرمال بودن مخروط در فضای متریک مخروطی بحث خواهیم کرد. در ادامه نشان می دهیم با حذف این شرط و با استفاده از همگرایی در این فضا این قض...
یکی از مسا یل اساسی در ریاضی حل معادله خطی tx=y است که در آن t یک عملگر خطی بین فضاهای باناخ می باشد. اگر t معکوس پذیر باشد در این صورت جواب یکتای معادله به صورت x=by خواهد بود که در آن b معکوس t می باشد. در فصل دوم این پایان نامه به بررسی شرایط لازم و کافی برای معکوس پذیری عملگر t پرداخته ومسأ له را به اصل نگاشت انقباض تبدیل می کنیم. از طرفی معکوس پذیری عملگر مسأ له ای مشکل می باشد و بنابر...
در این پایان نامه، مفهوم جدیدی از انقباض فازی را از نقطه نظر گریگوری و ساپنا مطرح کرده ایم. همچنین شرایطی برقرار کرده ایم که همگرایی دنباله یh-منقبض کننده ی فازی را به یک نقطه ی ثابت یکتا در فضاهای متریک m-کامل تضمین می کند. مثال های ذکر شده، صحت نتایج بدست آمده را نشان می دهد.
دسته ای جدید از نگاشت های ناجابه جایی موسوم به زوج های عملگر باناخ توسط چن و لی در سال 2007 معرفی شدند. این دسته از نگاشت های ناجابه جایی از دیگر نگاشت های ناجابه جایی موجود در مقالات چون r-به طور ضعیف ناجابه جایی، r-به طور زیر ضعیف ناجابه جایی، سازگار، به طور ضعیف سازگار و غیره متمایز می باشد. ابتدا به معرفی این مفهوم و گزاره های معادل با آن میپردازیم. سپس برخی از قضایای نقاط ثابت مشترک و وج...
مفهوم نقاط ثابت دوتایی را باسکار و لکشمیکنتام در سال 2006 معرفی کردند، آن ها چند قضیه نقطه ثابت دوتایی برای نگاشت های یکنوای مخلوط در فضاهای متری جزئی به دست آوردند و این قضایا را در اثبات وجود و یکتایی جواب مسائل مرزی به کار بردند. پس از آن لکشمیکنتام و جریچ چند قضیه نقطه ثابت دوتایی و نقطه انطباق دوتایی را برای دو نگاشت f و g که دارای خاصیت g-یکنوای مخلوط است، به دست آوردند. از آن پس قضایای ن...
اگر با اعمال سیاست مالی انبساطی یا انقباضی، مصرف خصوصی افزایش یا کاهش یابد، سیاست مالی، ماهیت کینزی و در غیر این صورت، ماهیت غیرکینزی خواهد داشت. گاهی ممکن است طی یک دوره مشخص، علاوه بر اثرات کینزی، اثرات غیر کینزی سیاست مالی نیز مشاهده شود، در این صورت، سیاست مالی دارای اثرات غیر خطی بر مصرف خواهد بود. در این مقاله اثرات غیر خطی سیاست مالی بر مصرف خصوصی طی دوره 1389:4-1372:2 در اقتصاد ایران بر...
چکیده قضیه نقطه ثابت باناخ که به اصل انقباض باناخ نیز مشهور است ، یکی از قضایای اصلی در نظریه نقطه ثابت است . بعد از مقال? باناخ ، ریاضی دانان تلاش هایی برای تعمیم این قضیه انجام دادند . برای مثال در سال 197? ، چیریچ [7] ، نگاشت های شبه انقباضی را معرفی و قضیه وجود و یکتایی نقطه ثابت برای این نگاشت ها را اثبات کرد . موضوع تعمیم قضیه نقطه ثابت باناخ برای نگاشت های چند مقداری ( که به آ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید