نتایج جستجو برای: ناخالصیهای n
تعداد نتایج: 976532 فیلتر نتایج به سال:
Let $R$ be a commutative ring with identity. A proper submodule $N$ of an $R$-module $M$ is an n-submodule if $rmin N~(rin R, min M)$ with $rnotinsqrt{Ann_R(M)}$, then $min N$. A number of results concerning n-submodules are given. For example, we give other characterizations of n-submodules. Also various properties of n-submodules are considered.
We observe some new characterizations of $n$-presented modules. Using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
هیدروکسی آپاتیت به فرمول شیمیایی ca10(po4)6(oh)2 و ساختار کریستالی هگزاگونال، ترکیب بازی کلسیم فسفات می باشد که در بدن تشکیل دهنده اصلی بافت استخوان و دندان می باشد . این ترکیب به علت سازگاری خیلی خوب با بافت بدن و ایجاد پیوند مستحکم با استخوان هم اکنون در ساخت پروتز بطور گسترده مورد استفاده قرار می گیرد. بدین منظور بررسی فیزیکی و شیمیایی هیدروکسی آپاتیت دمای بالا جهت ساخت قطعات زینتر شده ح...
we observe some new characterizations of $n$-presented modules. using the concepts of $(n,0)$-injectivity and $(n,0)$-flatness of modules, we also present some characterizations of right $n$-coherent rings, right $n$-hereditary rings, and right $n$-regular rings.
0
in this paper, we introduce the notion of $(m,n)$-algebraically compact modules as an analogue of algebraically compact modules and then we show that $(m,n)$-algebraically compactness and $(m,n)$-pure injectivity for modules coincide. moreover, further characterizations of a $(m,n)$-pure injective module over a commutative ring are given.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید