نتایج جستجو برای: میانگین پذیری عملگری مدولی
تعداد نتایج: 112717 فیلتر نتایج به سال:
فرض کنیم s یک نیمگروه گسسته باشد. در این پایان نامه جبر نیم گروهی l^1(s)، میانگین پذیری و ثابت میانگین پذیری cs آن بررسی شده است. به خصوص نشان داده میشود که بازه (5,1) مقادیری ممنوع برای cs است و اگر >cs5، آنگاه s یک گروه است. نشان داده می شود که میتوان فضای کاراکترهای جبر باناخ l^1(s) را با فضای نیمکاراکترهای s یکی گرفت. جبر فوریه l^1(s) یک جبر تابعی باناخ است که لزوماً منظم نیست. در حالتی...
یکی از نظریه ها که مورد علاقه ریاضیدانان جهت تحقیق و مطالعه در گرایش آنالیز هارمونیک می باشد، نظریه میانگین پذیری جبرهای باناخ است. نظریه میانگین پذیری در اوایل قرن بیستم با شروع مفهوم تئوری اندازه ها مورد بررسی و مطالعه قرار گرفت. در سال 1949 برای اولین بار دی مفهوم میانگین پذیر را برای گروه ها به کاربرد و جانسون میانگین پذیری جبرهای باناخ را به شکل کلی معرفی کرد. میانگین پذیری ضعیف جبرهای بان...
در این رساله میانگین پذیری داخلی روی گروه موضعاً فشرده ی $g$ را بررسی می کنیم. شروط کافی روی $g$ برای وجود یک میانگین پایای داخلی را به دست می آوریم، همچنین چند شرط لازم نیز حاصل می شود.در این رساله میانگین پذیری داخلی روی گروه موضعاً فشرده ی $g$ را بررسی می کنیم.
جبرهای لائو رده بزرگی از جبرهای باناخ است که اولین بار توسط لائو در سال ????معرفی گردید. میانگین پذیری جبرهای باناخ یکی از مهمترین مباحث آنالیز روی جبرهای باناخ است. در این پایان نامه به مطالعه میانگین پذیری چپ و میانگین پذیری داخلی جبرهای لائو می پردازیم.
در این رساله برای جبر باناخ a و مشخصه ی ناصفری روی آن مفهوم شبه میانگین پذیری مشخصه ای را معرفی و مطالعه میکنیم. همچنین شرایط لازم و کافی را برای شبه میانگین پذیری a بدست می آوریم و به بررسی خواص موروثی آن می پردازیم. به عنوان مثال نشان می دهیم a شبه میانگین پذیر مشخصه ای است اگر وتنها اگر یکدار شده ی آن شبه میانگین پذیر مشخصه ای باشد. همچنین به بررسی رابطه ی این مفهوم روی دوگان دوم و حاصلضرب ت...
در این پایان نامه بحث بر روی جبرهای باناخ میانگین پذیری تقریبی و شبه میانگین پذیری است. ابتدا به تعریف و خواص میانگین پذیری(انقباض پذیری)می پردازیم.سپس با ارایه ی تعریف میانگین پذیری تقریبی(انقباض پذیری تقریبی)،سعی می کنیم بعضی خواص مشترک و غیر مشترک آن را با میانگین پذیری(انقباض پذیری)بررسی کنیم.در پایان به خواص جبرهای باناخ شبه میانگین پذیر و شبه انقباض پذیر خواهیم پرداخت.
در این پایان نامه، شرایط لازم و کافی برای میانگین پذیری و میانگین پذیری ضعیف جبرهای باناخ را بررسی می کنیم و نشان می دهیم که برای یک گروه فشرده ی موضعی با تابع وزن ?،جبر بورلینگ (l^1 (g,? یک جبر باناخ است. علاوه بر این اگرg یک گروه فشرده ی موضعی آبلی باشد، (l^1 (g,? میانگین پذیر ضعیف است اگر و تنها اگر هیچ همریختی گروهی پیوسته ی غیر بدیهی ?:g?c موجود نباشد که ?>(((sup_t?g(|?(t)|/(?(t)?(t^(-1.
در فصل دوم جبرسگال عملگری, دوگان s1a(g), نگاشتهای میانگین گیری و تحدید و در پایان میانگین پذیری (ضعیف) s1a(g) مطالعه می شود. رابطه بین فضای مشتقات و ضربگرها و توصیف آنها در فصل دوم بررسی شده است. فصل پایانی شامل مباحثی پیرامون وجود تقریب های همانی برای ایده آلهای l1(g) (یا در حالت کلی هر جبرسگال ) روی یک گروه فشرده g است.
در این پایان نامه تحت چند شرط میانی روی یک جبر باناخ a داده شده است اگر دوگان دوم a میانگین پذیر از مرتبه فرد بود آنگاهa نیز میانگین پذیر است.و همچنین میانگین پذیری از مرتبه زوج جبر باناخ aرا نشان میدهیم.
در این پایان نامه به بررسی مفاهیم شبه میانگین پذیری جبرهای باناخ و میانگین پذیری تقریبی جبرهای باناخ که در یک کار مشترک توسَط قهرمانی، ژانگ و لوی در سال ???? معرفی گردید می پردازیم.نشان داده می شود که هر جبر باناخ تقریباْانقباض پذیر کراندار دارای واحد تقریبی کراندار است و بعلاوه جبر فوریه روی گروه آزاد با دو مولد، تقریباْ میانگین پذیر عملگری نیست. بعلاوه مثالهایی از جبرهای (s)l^1 که s یک نیم گروه ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید