نتایج جستجو برای: معادلات دیفرانسیل جزیی بیضوی
تعداد نتایج: 29406 فیلتر نتایج به سال:
بسیاری از معادلات دیفرانسیل با مشتقات جزئی که در مسائل کاربردی مثل فیزیک، مهندسی و ... ظاهر می گردند، از مرتبه ی بالای غیرخطی برخوردارند و چون جواب دقیق برای این مسائل وجود ندارد، لذا ما با استفاده از روش هاای عاددی مانناد روش عناصر متناهی جواب این معادلات را تقریب می زنیم. چون دامنه ی معادلات دیفرانسیل بسیار وسیع است برای راحتی کار آنها را به سه دسته تقسیم نموده اند: 1- معادلات سهموی 2-معاد...
چکیده در این پایان نامه به جواب های موجی سفری معادلات دیفرانسیل جزیی غیرخطی با استفاده از روش انتگرال اول پرداخته شده است. فصل اول شامل مفاهیم ابتدایی از قبیل معادلات دیفرانسیل جزیی و انواع آن و تئوری حلقه در جبرجابجایی است. در فصل دوم ابتدا به بیان قضایای مورد نیاز و دو قضیه ی اساسی که روش انتگرال اول بر مبنای آن ها پایه گذاری شده اشاره شده و سپس به شرح روش انتگرال اول پرداخته شده است. فصل...
در این مقاله، با استفاده از تئوری الاستیسیته غیرمحلی اثر مقیاس کوچک بر روی ارتعاش آزاد غیرخطی نانو ورق نازک همگن مورد بررسی قرار گرفته است. فرمول بندی براساس تئوری ورق کلاسیک (مدل کیرشهف) انجام گرفته و مدل غیرخطی فون کارمن در روابط جابجایی کرنشی استفاده شده است. جهت در نظر گرفتن مقیاس کوچک و اثر غیر خطی هندسی، معادلات دیفرانسیل حاکم بر اساس تئوری الاستیسیته غیرمحلی به همراه مدل هندسی فون کارمن ...
در این پایان نامه، یک روش عددی برای حل تقریبی معادلات دیفرانسیل جزیی مرتبه دوم بیان می کنیم. این روش بر اساس ترکیب روش اصلاح شده بی اسپلاین و تفاضلات متناهی می باشد. روش حاضر منجر به حل یک دستگاه معادلات دیفرانسیل معمولی می شود که با روش متعارف مانند رونگه- کوتا به حل آن خواهیم پرداخت و بعلاوه در برخی معادلات منجر به حل یک دستگاه معمولی می شود. همچنین جهت نشان دادن کارایی روش چند نمونه معادلات ...
در این پایان نامه به مرور برخی روشهای بدون شبکه برای حل معادلات دیفرانسیل با مشتقات جزیی می پردازیم. توابع پایه ای شعاعی را به عنوان یک روش بدون شبکه برای حل معادلات دیفرانسیل با مشتقات جزیی را به طور کامل معرفی می کنیم. برای درونیابی و حل معادلات دیفرانسیل با مشتقات جزیی از توابع پایه ای شعاعی پارامتری استفاده می کنیم. توابع پایه ای شعاعی را به پارامتر بهین مجهز می کنیم. این ویژگی باعث می شود ...
در این رساله هدف ارائه کاربرد گروه های لی در حل تحلیلی برخی از معادلات دیفرانسیل غیر خطی و همچنین معرفی نظریه کنج متحرک کارتان و فرمول بندی جدید و کاربرد آن در حل عددی-هندسی معادلات دیفرانسیل بکمک چندفضای اُلور می باشد. ابتدا مفاهیم اولیه و گروه های لی و گروه تقارن برای معادلات دیفرانسیل معرفی می شوند.سپس فضای جت بعنوان ساختار طبیعی مطالعه هندسی معادلات دیفرانسیل و مفهوم پرولانگیشن معرفی می گردد...
در سالهای اخیر روشهای بدون شبکه برای حل عددی معادلات دیفرانسیل با مشتقات جزئی محبوبیت زیادی پیدا کرده است. هدف این رساله ارائه روشهای عددی بدون شبکه بر اساس روش بدون شبکه محلی پتروف-گالرکین (mlpg) برای حل عددی معادلات دیفرانسیل با مشتقات جزئی است. در فصل اول مقدمه ای مختصر بر روشهای بدون شبکه ارائه خواهیم داد و آنها را به سه دسته کلی دسته بندی می کنیم. از آنجا که روشهای ارائه شده در این رساله...
در این پایان نامه یک روش جدید و سیستماتیک برای حل یک معادله دیفرانسیل جزیی از نوع سهموی و یا هذلولوی با شرایط غیر موضعی مطرح میکردد سپس معادله با استفاده از روش تجزیه ادومیان حل میکردد
هدف از انجام عمل گسسته سازی تبدیل یک یا چند معادله دیفرانسیل با مشتقات جزیی به یک دستگاه معادلات جبری است . حل این دستگاه ها باعث تولید یک مجموعه از مقادیری می شود که متناظر با جواب معادلات دیفرانسیل جزیی در برخی از موقعیت های مکانی یا زمانی است . فرآیندهای گسسته سازی به دو گام گسسته سازی دامنه جواب و گسسته سازی معادله تقسیم می شوند . گسسته -سازی دامنه جواب، یک توصیف عددی از دامنه محاسبه ای را ...
در این مقاله در نظر داریم بازارهای مهم مالی را با استفاده از روش های پیشرفتهی ریاضی مدلسازی کنیم. از آن جا که وابستگی تنگاتنگی بین بازار سهام و بازار مشتقات وجود دارد، مدل هایی را معرفی می کنیم که ضمن مدل سازی این دو بازار، رابطه ی بین محققان ریاضی، آمار، کامپیوتر و علوم مالی را مشخص کنند. علاوه بر این بازارها را طوری مدل سازی می کنیم که در آن، مدل های حاصل نقص مدل های پیشین را جبران کرده تا بد...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید