نتایج جستجو برای: معادلات انتگرال منفرد ضعیف
تعداد نتایج: 40895 فیلتر نتایج به سال:
ز انجایی که برای حل معادلات انتگرال منفرد (sies) که مبنای آنها مسائل تماس -شکست در مکانیک جامدات است روشهای عددی وجود دارد این روشها مبنای بسیاری از تحقیقات بوده است (که شامل روشهای هسته ی باز تولیدی می باشد .)
دراین پایان نامه روشهای عددی جدیدبرای حل معادلات انتگرال فردهلم خطی باهسته های منفرد ضعیف ازنوع دوم پیشنهادشده است،که آن رابررسی می کنیم.این روشهابوسیله تواناییهایی ازتقریب سینک باتبدیل هموارسازی توسعه یافته اند،که این روش برای معادلاتی که بشکل منفردند،قابل اجراست.مثالهای عددی نشان می دهد،که این روشهادارای همگرایی نمایی می باشند،وازاین لحاظ این روشهانتایج معمول ومرسوم راوقتی که فقط چند جمله ایه...
در این پایان نامه روش بسط سری تیلور برای حل معادلات انتگرال فردهلم نوع دوم با هسته های هموار و منفرد ضعیف به کار گرفته شده است ، این روش قبلا در [12] به کار گرفته شده بود، ولی در استفاده از این روش مشکل عمده ای وجود داشت که برای رفع این مشکل در [15] روش پیراسته سری تیلور ارایه شد. این پایان نامه سعی در توضیح چگونگی رفع مشکل در روش پیراسته بسط سری تیلور دارد. چند مثال عددی برای نشان دادن قابلیت ...
در این پایانامه ، یک روش طیفی هم محلی ژاکوبی برای معادلات انتگرال ولترا از نوع دوم با هسته منفرد ضعیف به فرم کلی زیر مورد بررسی قرار می گیرد y(t)=g(t)+?_0^t?(t-s)^(-µ) k(t,s)y(s)ds در این روش که از مرجع [1] برگرفته شده است ابتدا با استفاده از عملگرهای تبدیل و تغییر متغیرها این معادله را به یک معادله انتگرال جدید که روی فاصله استاندارد [-1,1] تعریف شده است تبدیل می کنیم. بنابراین جواب این ...
چکیده ندارد.
چکیده ندارد.
برای حل معادلات انتگرال پریشنده منفرد و معادلات انتگرال-دیفرانسیل ولترا مرتبه اول و معادلات انتگرال-دیفرانسیل تأخیری ولترا، از روش بسط متناهی لژاندر و برای حل معادلات انتگرال ولترا با هسته های لگاریتمی از بسط متناهی چبیشف استفاده می کنیم و به تحلیل خطا و بعد از آن به بررسی مقایسه بین نتایج به دست آمده با دیگر روش ها می پردازیم.
چکیده در این پایان نامه معادله ی انتگرال-دیفرانسیل از نوع ولترا (معادله ی تکاملی تدریجی) که در آن عملگر انتگرال از تلفیق یک تابع منفرد ضعیف و یک عملگر دیفرانسیل بیضوی بر حسب متغیر مکان است، در نظر می گیریم و به گسسته سازی زمانی آن با استفاده از تبدیل لاپلاس اصلاح شده می پردازیم. در این طرح گسسته سازی زمان جواب بر حسب یک انتگرال بر روی یک مسیر هموار در نیمه سمت چپ اعداد مختلط گسترش پیدا می کند ...
چکیده ندارد.
در این پایان نامه، یک معاددله ولترا-هامرشتین غیرخطی منفرد ضعیف نوع دوم که با یک عملگر فشرده تعریف شده ارائه شده است و یک درونیاب نوع نیستروم از جواب بر پایه نقاط گاوس-رادو ارائه می دهیم. همچنین همگرایی دورنیاب را اثبات کرده و تقریبهای همگرایی را ارائه می دهیم. برای معادلات جبری غیر خطی، سرعت همگرایی را با استفاده از انتقال هموار بهبود می بخشیم. همچنین برای نشان دادن کارایی و دقت روش پیشنهادی چن...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید