نتایج جستجو برای: مدولهای تصویری گرنشتاین n
تعداد نتایج: 983636 فیلتر نتایج به سال:
m را یک مدول وµ را یک کلاس در mod-r نظر بگیرید که تحت یکریختی و زیر مدول بسته است. مدولی که برای هر مدول از کلاس µ، اشتراکش با ان غیر صفر است. در این پایان نامه ارتباط بین مدولهای µ-اساسی و µ-منفرد، برای کلاس µ شامل مدولهای ساده ، مدولهای ناچیز و مدولهای متناهیا هم-تولید شده مورد بررسی قرار می گیرد.همچنین با استفاده از آنها خصوصیاتی از حلقه های نیمه ساده و مدولهای gco بررسی می شود.
در سال 1975، آسلاندر و ریتن حدسیه ای را مطرح کردند که به حدسیه ی آسلاندر-ریتن معروف است و بیانگر آنست که اگر ? یک جبر آرتینی و? یک ?- مدول با تولید متناهی باشد و برای هر i>0، ext_?^i (?,???)=0 آن گاه مدول? تصویری است. این حدسیه روی حلقه ی تعویضپذیر و نوتری r به شرط arc معروف است. هدف این پایان نامه بررسی حدسیه ی آسلاندر-ریتن روی حلقه های گرنشتاین است.
در این پایان نامه حلقه هایی را مشخص می کنیم که روی آنها هر مدول تصویری جمع مستقیمی از مدولهای متناهی تولیدشده است، و مثالهایی متنوّع از حلقه هایی با، و بدون این ویژگی ارائه می کنیم.
گیریم که r حلقه ای جابجایی و یکدار و m یک -r مدول یکه باشد در این پایان نامه ما موقعیت هایی را که در آنها مجموعه همه -p اول زیر مدولهای m متناهی هستند بررسی می کنیم و در این حالت نشان خواهیم داد که اگر r حلقه ای نوتری و m مدولی متناهیا" تولید شده باشد آنگاه عدد مثبت و صحیحی چون n پیدا می شود که تعداد عناصر مجموعه تمام -p اول زیر مدولهای m کمتر یا مساوی n است . همچنین در این حالت نشان خواهیم داد...
در سراسر این پایان نامه فرض می کنیم r–حلقه ای نوتری، a یک ایده آل r و m یک r–مدول باشد. مدول های کوهمولوژی موضعی اولین بار توسط گروتندیگ معرفی شد و یکی از زمینه های مهم تحقیقاتی در هندسه جبری و جبر جابجایی می باشد. مدول های مینیماکس نیز نخستین بار توسط زوشنگر تعریف و در مقاله معروفش تحت همین نام مورد مطالعه قرار گرفت و نتایج جالبی توسط خود زوشنگر ثابت شده است. به عنوان مثال هر مدول نوتری و آرتی...
درحالت کلی کلاس اشیاء یک رسته ی آبلی دلخواه ?? بسیار پیچیده تر از آن است که بتوان یک دسته بندی رضایت بخش از اشیاء آن بدست آورد. یک روش این است که با یک زیر کلاس شناخته شده ی ? از اشیاء ?? شروع کنیم و تلاش کنیم تا اشیاء دلخواه را به وسیله ی اشیاء ? تقریب بزنیم. این تقریب بطور موفقیت آمیزی در دهه های اخیر روی رسته های مدول ها از طریق نظریه ی پیش پوشش ها و پیش پوش ها، یا تقریب های چپ و راست بررسی ...
فرض کنیم r یک حلقه جابجایی و نوتری و a ایده آلی از r باشد و m یک r – مدول باشد. ابتدا نشان می دهیم که اگر m متناهی مولد باشد و مدولهای کوهمولوژی موضعی (h(m مینیماکس باشند آنگاه برای هر زیر مدول مینیماکس n از m مدول ( hom (r/i, h(m)/n متناهی مولد است که نتیجه می دهد مجموعه (ass(h(m)/n یک مجموعه متناهی است در ادامه برای مدول دلخواه m عضویت مدولهای کوهمولوژی موضعی (h(m به یک کلاس زیر کاتگوری سر خ...
چکیده ندارد.
چکیده ندارد.
در این رساله n-امین مدول کوهمولوژی موضعی ازr-مدول m در یک زیرکاتگوری سر از کاتگوری r-مدولها از پایین (in)مطالعه می شوند. در حالت کلی عمق و رشته های منظم تعریف می شوند. رابطه آنها با کوهمولوژی موضعی نشان می دهد که مطالعه مدولهای کوهمولوژی موضعی یک r-مدول متناهی مولد از بالا در یک زیرکاتگوری سر از کاتگوری r-مدولها فقط به تکیه گاه مدول بستگی دارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید