نتایج جستجو برای: مدل عصبی فیتزهاگ ناگومو

تعداد نتایج: 129194  

ژورنال: :دانش آب و خاک 2014
محمدابراهیم بنی حبیب فریماه سادات جمالی

هدف تحقیق حاضر، مقایسه توانایی مدل شبکه عصبی مصنوعی و مدل همبستگی خطی چند متغیره در پیشبینی ششماه آیندة جریان ورودی به مخزن سد شاهچراغی در استان سمنان، بر اساس دادههای ماهانه آبدهی، دمای متوسط،ماهواره avhrr بارش و سطح پوششبرف چند ماه قبل میباشد. برای تعیین سطح پوششبرف، از تصاویر سنجندهاستفاده گردیده و جداسازی سطح برف با استفاده از روش جداسازی پدیدهها بر اساس حد آستانه هیستوگرام noaaآنها در باند...

ژورنال: :مجله تحقیقات اقتصادی 2001
دکتر سعید مشیری

امروزه ، پیش بینی متغیر های کلان اقتصادی از اهمیت ویژه ای برای سیاستگذاران و سایر واحد های اقتصادی برخوردار است. در نتیجه ، دردهه های اخیر ، مدل های پیش بینی گوناگونی توسعه یافته و به رقابت با یکدیگر پرداخته اند. اخیراً به موازات مدل های متداول قبلی مانند مدل های ساختاری و سری زمانی ، مدل های دیگری تحت عنوان شبکه های عصبی مصنوعی در زمینه پیش بینی متغیر های مالی و پولی بکار گرفته شده اند. این مدل...

ژورنال: محیط شناسی 2009
آلاله قائمی اشکان فرخ‌نیا روح‌اله نوری محمد علی عبدلی

پیش‌بینی کمیت تولید، نقشی اساسی در بهینه‌سازی و برنامه‌ریزی سیستم مدیریت مواد زاید جامد شهری دارد. اما به دلیل طبیعت ناهمگون و تأثیر عوامل متنوع و خارج از کنترل بر تولید، همواره با مشکلات زیادی همراه بوده است. شبکة عصبی مصنوعی اخیراً در بسیاری از کاربردهای مهندسی نظیر مهندسی محیط زیست به عنوان ابزاری قدرتمند در مدلسازی مورد توجه قرار گرفته است. در این تحقیق با توجه به دینامیک و پیچیده بودن سیستم...

ژورنال: :علوم و فنون نقشه برداری 0
محمد اصلانی m. aslani faculty of geodesy and geomatics eng. k.n.toosi university of technology no 1346, valiasr street, mirdamad cross, tehran, iran 19967-15433گروه مهندسی gis، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی تهران، خیابان ولی عصر، تقاطع میرداماد، کد پستی 15433-19967 محمد طالعی m. taleai faculty of geodesy and geomatics eng. k.n.toosi university of technology no 1346, valiasr street, mirdamad cross, tehran, iran 19967-15433گروه مهندسی gis، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی تهران، خیابان ولی عصر، تقاطع میرداماد، کدپستی 15433-19967

آنچه سامانه های اطلاعات مکانی (gis) با آن روبه رو هستند، اطلاعاتی است که در قالب لایه های مکانی مدون گشته اند. یکی از مهم ترین وظایف سامانه های اطلاعات مکانی تحلیل لایه ها به منظور مدل سازی پدیده های مکان مرجع است. عدم توجه کافی به چنین مدل سازی هایی می تواند منجر به نتایج غیرواقعی در تصمیم گیری های مکانی و در پی آن خسارات مالی زیادی شود. در بسیاری از مدل سازی های مکانی، راه حل تحلیلی خاصی برای...

ژورنال: :مهندسی عمران شریف 0
محمد امامی دانشکده ی فنی و مهندسی، دانشگاه تربیت مدرس سید شهاب الدین یثربی دانشکده ی فنی و مهندسی، دانشگاه تربیت مدرس

آزمایش پرسیومتری(فشارسنجی)، یکی از مهم ترین آزمایش های برجای مهندسی ژئوتکنیک است. این آزمایش قادر به تخمین بسیار مناسبی از پارامترهای تغییر شکلی خاک است. در این تحقیق از سه نوع شبکه ی عصبی مصنوعی(a n n) به منظور مدل سازی آزمایش پرسیومتری(فشارسنجی) استفاده شده است. برای این منظور ابتدا از پرسپترون چندلایه ــ یکی از پرکاربردترین شبکه های عصبی ــ استفاده شد و در ادامه، با استفاده از شبکه ی نوروفاز...

ژورنال: آبخیزداری ایران 2015

پیش‌بینی مؤلفه‌های باد از جمله سرعت باد یکی از عوامل مهم به خصوص در بحث تبخیر در یک حوزه آبخیز محسوب می‌گردد. در این مقاله سعی گردید، جهت افزایش کارایی مدل‌های هوش مصنوعی، در پیش‌بینی سرعت باد، دو مدل شبکه عصبی و فازی-عصبی با تئوری موجک ترکیب شده و دو مدل هیبرید جدید ارائه گردید. در این تحقیق با استفاده از برخی پارامتر‌های اقلیمی ایستگاه همدیدی یزد از جمله سرعت باد، دمای متوسط، دمای بیشینه، رطو...

در این نوشتار با ارائه‌ی نمونه‌ی عملی فرایند «افشانه‌ی خشک‌کنندهپانویس{s‌p‌r‌a‌y d‌r‌y‌i‌n‌g}»، مدل‌سازی فرایندها با استفاده از مدل‌های رگرسیون لجستیک و الگوریتم شبکه‌ی عصبی مصنوعی با هدف پیش‌بینی )برون‌یابی و درون‌یابی( عملکرد فرایند به کار گرفته می‌شود. به‌منظور مقایسه‌ی قدرت هرکدام از این دو مدل در پیش‌بینی عملکرد فرایند، شاخص‌های ارزیابی پایایی مدل، شامل ضرایب تعیین مدل و درصد صحت پیش‌بینی،...

ژورنال: :مهندسی زیست سامانه 0

جهت ارزیابی عملکرد پاشش یک سمپاش زراعی نرخ متغیر، از روش شبکه عصبی مصنوعی استفاده شد. داده های لازم برای مدل سازی، از آزمون های مزرعه ای به دست آمد. برای مدل سازی بده خروجی افشانک ها،727 شبکه با چهار نوع مدل عصبی مصنوعی خطی، پرسپترون چندلایه، تابع پایه شعاعی و رگرسیون تعمیم یافته آزمون شدند. برای هر افشانک 45، 22 و 23 داده به ترتیب برای آموزش، اعتبارسنجی و آزمایش استفاده شد. مدل تابع پایه شعاعی...

ژورنال: ژئوفیزیک ایران 2010
حسین خوشدل مجید نبی بیدهندی, محمدرضا واشقانی فراهانی

در این مقاله از مدل فازی عصبی برای برآورد خواص مخزن با استفاده از نشانگرهای لرزه ای استفاده شده است. الگوریتم "درخت مدل خطی‌محلی(LOLIMOT)" برای آموزش مدل به‌کار رفته است. این مدل از نگارهای چاه و نشانگرهای لرزه ای در محل چاه در مرحله آموزش استفاده می‌کند. شبکه فازی عصبی آموزش‌‌دیده برای برآورد خصوصیات مخزن با استفاده از نشانگرهای لرزه‌ای مورد استفاده قرار می‌گیرد. این روش در یک تاقدیس هیدروکربن...

ژورنال: مهندسی صنایع 2013

در این مقاله، یک رویکرد جدید مدل­سازی برای مدل‌های شبکه عصبی مصنوعی بر مبنای مفاهیم شبکه­های عصبی و رگرسیون فازی ارائه شده است. به این منظور، مدل شبکه عصبی مصنوعی در قالب یک مدل رگرسیون غیرخطی فازی فرموله شده است، به نحوی که این مدل، مزایای هر دو مدل رگرسیون فازی و شبکه عصبی مصنوعی را دارد. بنابراین، این مدل به دلیل انعطاف­پذیری بالا، قابلیت استفاده در شرایط نبود قطعیت، مبهم یا پیجیده را دارد. ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید