نتایج جستجو برای: مدل سازی arima
تعداد نتایج: 186837 فیلتر نتایج به سال:
The U.S. Census Bureau has enhanced the X-12-ARIMA seasonal adjustment program by incorporating an improved automatic regARIMA model (regression model with ARIMA errors) selection procedure. Currently this procedure is available only in test version 0.3 of X-12ARIMA, but it will be released in a future version of the program. It is based on the automatic model selection procedure of TRAMO , an ...
The standardized precipitation index (SPI) was used to quantify the classification of drought in the Guanzhong Plain, China. The autoregressive integrated moving average (ARIMA) models were developed to fit and forecast the SPI series. Most of the selected ARIMA models are seasonal models (SARIMA). The forecast results show that the forecasting power of the ARIMA models increases with the incre...
ARIMA is a popular method to analyze stationary univariate time series data. There are usually three main stages to build an ARIMA model, including model identification, model estimation and model checking, of which model identification is the most crucial stage in building ARIMA models. However there is no method suitable for both ARIMA and SARIMA that can overcome the problem of local optima....
Drought forecasting plays a crucial role in drought mitigation actions. Thus, this research deals with linear stochastic models (autoregressive integrated moving average (ARIMA)) as a suitable tool to forecast drought. Several ARIMA models are developed for drought forecasting using the Standardized Precipitation Evapotranspiration Index (SPEI) in a hyper-arid climate. The results reveal that a...
در پیش بینی قیمت سهام، روش های گوناگونی به کار رفته است، اما هیچ کدام از آن ها نمی تواند، به تمام متغیّرهای شرکت کننده در برآورد مدل قیمت سهام و اثر هر یک از آن ها و حل خطای مدل بپردازد. اکثر حوزه های پیش بینی در روش های کلاسیکی، چون ARIMA و روش های نوینی، چون شبکه های عصبی برای قیمت سهام قرار دارند. در این پژوهش به روشی دست یافته شده که حاصل ادغام رگرسیون معمولی و رگرسیون فازی به همراه بهینه س...
پیشبینی براساس مدلهای چندمتغیری اقتصادسنجی با محدودیتهایی زیادی همراه است، بنابراین یک روش جایگزین استفاده از مدلهای تک متغیری است. اما اکثر روشهای تکمتغیری برای حصول به نتیجه خوب نیاز به دادههای زیادی دارند. روشهای رگرسیون فازی بهدلیل فازی در نظر گرفتن اعــداد، برای مدلسازی و پیشبینی معمولاً نیاز به دادههای کمتری دارند. از اینرو در این مطالعه کارایی روش رگرسیون خودبازگشتی میانگین ...
Measurements of high-speed network traffic have shown that traffic data exhibits a high degree of self-similarity. Traditional traffic models such as AR and ARMA are not able to capture this long-range-dependence making them ineffective for the traffic prediction task. In this paper, we apply the fractional ARIMA (F-ARIMA) model to predict one-step-ahead traffic value at different time scales. ...
در این تحقیق به مقایسه کارایی دو روش پیشبینی شبکه عصبی مصنوعی (ANN) و روش سنتی خودرگرسیون میانگین متحرک انباشته (ARIMA) در پیشبینی قیمت سهام در بازار سهام ایران پرداخته شده است. بدین منظور 2 شرکت دارویی البرزدارو و جامدارو انتخاب شده و مدل ARIMA و مدل شبکه عصبی مصنوعی برای هر دو شرکت تخمین زده شد. به منظور تخمین مدل شبکه عصبی مصنوعی، متغیر قیمت سهام به عنوان متغیر وابسته و متغیرهای حجم معا...
توانایی پیش بینی یکی از مهم ترین مهارت های مورد نیاز برنامه ریزان و پژوهشگران علوم منابع طبیعی است. ابهام و پیچیدگی و چندلایه بودن رویدادها ، پیش بینی را به یکی از دشوارترین وظایف فراروی هر محقق تبدیل کرده است بنابراین با درک الگوی زمانی تغییر پذیری اقلیم، می توان با شناختی کامل تر از الگوهای اقلیمی در آینده، نسبت به پیش بینی و مدیریت اقدام نمود. این پژوهش با هدف بررسی قابلیت مدل های سری های زم...
This paper examines the forecasting performance of ARIMA and artificial neural networks model with published stock data obtained from New York Stock Exchange. The empirical results obtained reveal the superiority of neural networks model over ARIMA model. The findings further resolve and clarify contradictory opinions reported in literature over the superiority of neural networks and ARIMA mode...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید