نتایج جستجو برای: عدد احاطه ای تام
تعداد نتایج: 250993 فیلتر نتایج به سال:
بازی احاطه ای بر روی گراف های ساده ی بدون جهت توسط دو بازیکن $mathcal d$ و $mathcal a$ انجام می شود. هر یک از این بازیکنان در نوبت بازی خود یک یال بدون جهت را انتخاب و آن را جهت گذاری می کنند. بازی را بازیکن $mathcal d$ شروع می کند و در جهت گذاری یال ها به دنبال کاهش عدد احاطه ای گراف جهت داری است که در انتهای بازی به دست خواهد آمد، در حالی که بازیکن $mathcal a$ به دنبال افزایش این عد...
مجوعه ی احاطه گر دوبدودر گراف ها اولین بار توسط هینس و اسلتر در سال 1998 به عنوان الگویی برای گرفتن پشتیبان وحفاظت از اهداف محرمانه ارائه شد. جان مک کوی ومیچل هنینگ درسال2009 دو مفهوم مکان یابی و مجموعه ی احاطه گر دوبدو را ترکیب کردند و سه تعریف جدید مجموعه های احاطه گر دوبدو مکان یابی ومجموعه های احاطه گر دوبدو مشتق پذیر و مجموعه های احاطه گر دوبدو متریک را ارائه کردند. در این پایان نامه، فصل...
در این پایان¬نامه ابتدا ساختار مکعب¬های فیبوناچی را که شامل ساختار بازگشتی، دنباله درجه و نتایج شمارش است، بررسی می¬کنیم. هم¬چنین ویژگی مکعب¬های فیبوناچی که شامل شعاع، قطر و مرکز می¬باشد را بیان می¬کنیم سپس با استفاده از این مفاهیم مقدار دقیق عدد احاطه¬گری از مرتبه حداکثر 8، را پیدا می¬کنیم. همچنین برای مقادیر بالای 8 کران¬های بالا و پایین معرفی می¬کنیم.
در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.
چکیده فرض کنیم g یک گروه باشد مرکز ساز عنصر x?g را به صورت زیر تعریف می کنیم؛ c_g (x)={y?g? است آبلی?x,y? } اگر در این تعریف، کلمه آبلی را با کلمه دوری جایگزین کنیم. یک زیر مجموعه از مرکزساز به دست می آید که به این زیرمجموعه، دوری ساز x در g می گوییم و آن را با cyc_g (x) نشان می دهیم پس؛ cyc_g (x)={y?g? ?x,y?است دوری} همچنین، cyc(g) را به صورت زیرتعریف می کنیم؛ cyc(g)={x?g??x,y?است دور...
در این پایان نامه ، عدد 2- احاطه کننده برخی از گراف ها مورد مطالعه قرار می گیرد و کران های بالا و پایین مختلفی را از عدد 2-احاطه کننده نسبت به پارامترهای مختلفی از جمله ، عدد استقلالی ، عدد احاطه کننده ، مرتبه گراف ، تعداد برگ ها و دیگر پارامترها نشان خواهیم داد و همچنین به مقایسه عدد 2-احاطه کننده با عدد احاطه کننده و عدد احاطه کننده مستقل می پردازیم و شرایط لازم و کافی را برای گراف هایی که عد...
مجموعه s از رئوس گراف g را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s با حداقل یک رأس از s مجاور باشد. در گراف جهت دار d مجموعه s از رئوس را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s در همسایگی خروجی حداقل یکی از رئوس s قرار داشته باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر را عدد احاطه ای نامیده و با ?(g) نشان میدهند. مقدار عدد احاطه ای یک گراف و گراف جهت دار می تواند با اضافه...
فرض کنید g=(v(g),e(g)) گرافی با مجموعه رئوس v(g) و مجموعه یال های e(g) باشد. زیرمجموعه s از رئوس g یک مجموعه احاطه گر نامیده می شود هرگاه هر رأس در v(g)-s حداقل با یک رأس در s مجاور باشد. عدد احاطه ای گراف g، کوچکترین اندازه یک مجموعه احاطه گر در g است و با ?(g) نشان داده میشود. به وضوح عدد احاطه ای گراف g با حذف یال هایی از g ممکن است افزایش یابد. اگر g یک گراف ناتهی باشد، مینیمم تعداد یال ...
مجموعه های احاطه گر موضوعی پرکاربرد و گسترده در نظریه ی گراف است که به صورت های گوناگونی تعمیم یافته است و امروزه در سطح وسیعی در دست مطالعه و بررسی است. یکی از انواع این تعمیم ها توابع احاطه گر رنگین کمانی است. تابع $f:v(g) ightarrow p({1, 2})$ را یک تابع احاطه گر 2-رنگین کمانی روی $g$ گویند هرگاه به ازای هر راس $vin v(g)$ با ویژگی $f(v)=emptyset$ تساوی $igcup_{uin n(...
فرض کنید g یک گراف با مجموعه رِِِأسهای v و مجموعه یالهای e باشد. زیرمجموعه s از رأسهای g را مجموعه احاطه گر می گویند هر گاه هر رأس vs با حداقل یک رأس از s مجاور باشد.زیرمجموعه s را احاطه گر تام می گویند اگر هر رأس از v با حداقل یک رأس از s مجاور باشد. اگر در تعاریف این مجموعه ها بجای کلمه حداقل از کلمه دقیقاٌ استفاده کنیم مجموعه های مذکور را به ترتیب کد کامل و کدتام کامل می نامند. اگر تعریف کد کامل...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید