نتایج جستجو برای: شبکه های hierarchical bayesian belief

تعداد نتایج: 699832  

Journal: :IEEE Trans. Systems, Man, and Cybernetics, Part A 1997
Michael M. Marefat Qiang Ji

This paper introduces a new uncertainty reasoningbased method for identification and extraction of manufacturing features from solid model description of objects. A major difficulty faced by previously proposed methods for feature extraction has been the interaction between features. In interacting situations, the representation for various primitive features is nonunique making their recogniti...

2014
Saee Paliwal Frederike Petzschner Anna Katharina Schmitz Marc Tittgemeyer Klaas E. Stephan

Impulsivity plays a key role in decision-making under uncertainty. It is a significant contributor to problem and pathological gambling (PG). Standard assessments of impulsivity by questionnaires, however, have various limitations, partly because impulsivity is a broad, multi-faceted concept. What remains unclear is which of these facets contribute to shaping gambling behavior. In the present s...

2014
Wiem Maalel Kuang Zhou Arnaud Martin Zied Elouedi

In the data mining field many clustering methods have been proposed, yet standard versions do not take into account uncertain databases. This paper deals with a new approach to cluster uncertain data by using a hierarchical clustering defined within the belief function framework. The main objective of the belief hierarchical clustering is to allow an object to belong to one or several clusters....

Journal: :Artificial intelligence in medicine 2003
Peter Antal Geert Fannes Dirk Timmerman Yves Moreau Bart De Moor

Incorporating prior knowledge into black-box classifiers is still much of an open problem. We propose a hybrid Bayesian methodology that consists in encoding prior knowledge in the form of a (Bayesian) belief network and then using this knowledge to estimate an informative prior for a black-box model (e.g. a multilayer perceptron). Two technical approaches are proposed for the transformation of...

1999
DOV SAMET

According to the standard definition, a Bayesian agent is one who forms his posterior belief by conditioning his prior belief on what he has learned, that is, on facts of which he has become certain. Here it is shown that Bayesianism can be described without assuming that the agent acquires any certain information; an agent is Bayesian if his prior, when conditioned on his posterior belief, agr...

2008
Michael Y. K. Kwan K. P. Chow Frank Y. W. Law Pierre K. Y. Lai

This paper presents methods for analyzing the topology of a Bayesian belief network created to qualify and quantify the strengths of investigative hypotheses and their supporting digital evidence. The methods, which enable investigators to systematically establish, demonstrate and challenge a Bayesian belief network, help provide a powerful framework for reasoning about digital evidence. The me...

Journal: :International Journal of Man-Machine Studies 1989
Frans Voorbraak

An often mentioned obstacle for the use of Dempster-Shafer theory for the handling of uncertainty in expert systems is the computational complexity of the theory. One cause of this complexity is the fact that in Dempster-Shafer theory the evidence is represented by a belief function which is induced by a basic probability assignment, i.e. a probability measure on the powerset of possible answer...

2015
Fatemeh Asgari Ali Salehi

It is herein proposed a handwritten digit recognition system which biologically inspired of the large-scale structure of the mammalian neocortex. Hierarchical Temporal Memory (HTM) is a memory-prediction network model that takes advantage of the Bayesian belief propagation and revision techniques. In this article a study has been conducted to train a HTM network to recognize handwritten digits ...

2007
A. Mendiburu R. Santana J. A. Lozano

This paper incorporates Belief Propagation into an instance of Estimation of Distribution Algorithms called Estimation of Bayesian Networks Algorithm. Estimation of Bayesian Networks Algorithm learns a Bayesian network at each step. The objective of the proposed variation is to increase the search capabilities by extracting information of the, computationally costly to learn, Bayesian network. ...

2002
Subrata Das Rachel Grey

We present here an approach to battlefield situation assessment based on a level 2 fusion processing of incoming information via probabilistic Bayesian Belief Network technology. A belief network (BN) can be thought of as a graphical program script representing causal relationships among various battlefield concepts represented as nodes to which observed significant events are posted as evidenc...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید