نتایج جستجو برای: شبکه عصبی adaline
تعداد نتایج: 42778 فیلتر نتایج به سال:
The Adaline network [1] is a classic neural architecture whose learning rule is the famous least mean squares (LMS) algorithm (a.k.a. delta rule or Widrow-Hoff rule). It has been demonstrated that the LMS algorithm is optimal in H∞ sense since it tolerates small (in energy) disturbances, such as measurement noise, parameter drifting and modelling errors [2,3]. Such optimality of the LMS algorit...
هدف این مطالعه، تخمین نفت زیستی حاصل از فرایند پیرولیز مواد زائد بر حسب رطوبت، کربن ثابت، مواد فرار و خاکستر است. از نتایج آزمایشگاهی 41 مطالعه مختلف برای مدل سازی استفاده شد. از مدل شبکه عصبی به عنوان یک ابزار سیاستگذاری در ارزیابی و پیشبینی مقدار درصد نفت زیستی حاصل از مواد زائد طی فرایند پیرولیز استفاده شد. مقادیر بهینه پارامترهای شبکه عصبی به روش آماری تخمین زده شد. نتایج مقایسات در دو ش...
استفاده از شبکه های عصبی مصنوعی بهعنوان روشی جدید برای برآورد مشخصه های فیزیکی محصولات کشاورزی و درجه بندی آنها بر حسب پارامترهای مختلف مطرح شده است. در این پژوهش ابتدا مقادیر مشخصه های فیزیکی 100 عدد پرتقال رقم محلی دزفول شامل سه بعد هندسی، جرم، حجم و سطح تصویر عمودی اندازه گیری شد و از دو شبکه عصبی مصنوعی برای مدلسازی جرم و حجم پرتقال برحسب ابعاد هندسی (ann(h,w,t)) و سطح تصویر (ann(a)) میوه ا...
هدف این مطالعه، تخمین نفت زیستی حاصل از فرایند پیرولیز مواد زائد بر حسب رطوبت، کربن ثابت، مواد فرار و خاکستر است. از نتایج آزمایشگاهی 41 مطالعه مختلف برای مدل سازی استفاده شد. از مدل شبکه عصبی به عنوان یک ابزار سیاستگذاری در ارزیابی و پیشبینی مقدار درصد نفت زیستی حاصل از مواد زائد طی فرایند پیرولیز استفاده شد. مقادیر بهینه پارامترهای شبکه عصبی به روش آماری تخمین زده شد. نتایج مقایسات در دو ش...
قیمت نفت، اهمیت و نوسانات آن در طول زمان در اخذ تصمیمات مهم اقتصادی در دنیا، سبب گسترش روشهای مختلفی در پیشبینی قیمت نفت، ازجمله ابزارهای غیرخطی مانند شبکه عصبی شده است. در این مقاله برای در نظر گرفتن عامل زمان در پیشبینی توسط شبکه عصبی، با دریافت بازخورد از شبکه عصبی مصنوعی اصلاح شده با الگوریتم ژنتیک GADNN وقفههای بهینه ناشی از ورودیها و خروجیهای قیمت نفت توسط شبکه عصبی پویا محاسبه میگ...
مطالعه حاضر به دنبال مدلسازی رابطه گوردون با استفاده از روش شبکه عصبی پیشخور برای تعدادی از شرکتهای پذیرفته شده در بورس اوراق بهادار تهران است. در این مطالعه به بررسی مدل گوردون با رویکرد غیرخطی و مقایسه آن با مدل خطی رگرسیون پرداخته شده است. بررسی مدل غیرخطی گوردون با استفاده از شبکه عصبی تاکنون در مطالعات مورد توجه قرار نگرفته است. در این پژوهش از اطلاعات 247 شرکت و تعداد 1135 مشاهده (ش...
در این مقاله به منظور بررسی ارتباط بین افت فشار سیکلون جداسازی و پارامترهای هندسی سیکلون غبارگیری، سه نوع شبکه عصبی مصنوعی انتشار بازگشتی[1]، شبکه عصبی تابع پایه شعاعی[2] و شبکه عصبی رگرسیون تعمیم یافته[3] به کارگرفته شدهاند. پس از آموزش آنها با دادههای تجربی، پارامترهای بهینه عملکردی هر کدام شبکه ها، با روش جستجوی چند مرحله ای[4] به دست آمده اند. شبکهها بر اساس میزان ضریب همبستگی[5]، خطای ...
در این مقاله، به منظور ارزیابی تأثیر دینامیک های آشوب گونه در افزایش کارایی شبکه های عصبی بازگشتی در بازشناسی مقاوم الگو، دو مدل برای شبکه های عصبی آشوب گونه ارائه شده است. در مدل اول که براساس نظریه انتخاب طبیعی طراحی گردیده است، شبکه عصبی بازگشتی جاذب (arnn) به عنوان هوش حاکم، تنوعات ایجاد شده توسط گره های آشوبی را در جهت رسیدن به جواب بهینه هدایت می نماید. در مدل دوم، ساختاری از شبکه عصبی آش...
سابقه و هدف: امروزه صنعتی شدن توسعه شهرنشینی باعث آلودگی هوا در اکثر کلانشهرهای جهان شده است سالانه میلیون ها نفر به علت جان خود را از دست می دهند. ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﻣﺤﺪود ﺑﻮدن ﺷﺒﻜﻪ اﻳﺴﺘﮕﺎهﻫﺎى ﭘﺎﻳﺶ آﻻﻳﻨﺪهﻫﺎى ﻫﻮا ﻏﻴﺮ اﻗﺘﺼﺎدى اﻓﺰاﻳﺶ ﺗﻌﺪاد این اﻳﺴــﺘﮕﺎهﻫا سطح شهرها، دﺳﺖﻳﺎﺑﻰ ﭘﻮﺷــﺶ ﻣﻜﺎﻧﻰ زﻣﺎﻧﻰ ﻣﻨﺎﺳــﺐ برای ﻧﺸﺎن دادن ﺗﻐﻴﻴﺮات ﻏﻠﻈﺖ ذرات آلاینده ﺑﺴﻴﺎر دﺷﻮار اﺳﺖ. بر اساس پژوهش حاضر با هدف تهیه نقشه ها...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید