نتایج جستجو برای: روش gmres

تعداد نتایج: 370580  

2007
PETR TICHÝ JÖRG LIESEN VANCE FABER

When solving a linear algebraic system Ax = b with GMRES, the relative residual norm at each step is bounded from above by the so-called ideal GMRES approximation. This worstcase bound is sharp (i.e. it is attainable by the relative GMRES residual norm) in case of a normal matrix A, but it need not characterize the worst-case GMRES behavior if A is nonnormal. Characterizing the tightness of thi...

2005
M. Behr

This note describes the usage of the GMRES solver using reverse communication protocol. The GMRES control flow is outlined, and an example calling sequence explained.

Journal: :SIAM Journal on Scientific Computing 1996

Journal: :SIAM Journal on Scientific Computing 2023

The GMRES algorithm of Saad and Schultz [SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856–869] is an iterative method for approximately solving linear systems , with initial guess residual . employs the Arnoldi process to generate Krylov basis vectors (the columns ). It well known that this can be viewed as a factorization matrix at each iteration. Despite loss orthogonality, unit roundoff conditi...

1994
Henk A. Van der Vorst Diederik R. Fokkema Gerard L. Sleijpen

In the past few years new methods have been proposed that can be seen as combinations of standard Krylov subspave methods, such as Bi{ CG and GMRES. One of the rst hybrid schemes of this type is CGS, actually the Bi{CG squared method. Other such hybrid schemes include BiCGSTAB (a combination of Bi{CG and GMRES(1)), QMRS, TFQMR, Hybrid GMRES (polynomial preconditioned GMRES) and the nested GMRES...

2006
Márcia A. Gomes-Ruggiero Véra L. Rocha Lopes Julia V. Toledo-Benavides

Restarting GMRES, a linear solver frequently used in numerical schemes, is known to suffer from stagnation. In this paper, a simple strategy is proposed to detect and avoid stagnation, without modifying the standard GMRES code. Numerical tests with the modified GMRES(m), GMRESH(m) procedure, alone and as part of an inexact Newton procedure with several choices for the forcing term, demonstrate ...

Journal: :SIAM J. Matrix Analysis Applications 2013
Vance Faber Jörg Liesen Petr Tichý

In the convergence analysis of the GMRES method for a given matrix A, one quantity of interest is the largest possible residual norm that can be attained, at a given iteration step k, over all unit norm initial vectors. This quantity is called the worst-case GMRES residual norm for A and k. We show that the worst case behavior of GMRES for the matrices A and A is the same, and we analyze proper...

Journal: :CoRR 2015
Amit Amritkar Eric de Sturler Katarzyna Swirydowicz Danesh K. Tafti Kapil Ahuja

The most popular iterative linear solvers in Computational Fluid Dynamics (CFD) calculations are restarted GMRES and BiCGStab. At the beginning of most incompressible flow calculations, the computation time and the number of iterations to converge for the pressure Poisson equation are quite high, since the initial guess is far from the solution. In this case, the BiCGStab algorithm, with relati...

Journal: :SIAM J. Matrix Analysis Applications 2014
Emmanuel Agullo Luc Giraud Yan-Fei Jing

We consider the solution of large linear systems with multiple right-hand sides using a block GMRES approach. We introduce a new algorithm that effectively handles the situation of almost rank deficient block generated by the block Arnoldi procedure and that enables the recycling of spectral information at restart. The first feature is inherited from an algorithm introduced by Robbé and Sadkane...

2014
Ichitaro Yamazaki Stanimire Tomov Tingxing Dong Jack J. Dongarra

The Generalized Minimum Residual (GMRES) method is a popular Krylov subspace projection method for solving a nonsymmetric linear system of equations. On modern computers, communication is becoming increasingly expensive compared to arithmetic operations, and a communication-avoiding variant (CA-GMRES) may improve the performance of GMRES. To further enhance the performance of CAGMRES, in this p...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->