نتایج جستجو برای: روش arima
تعداد نتایج: 372572 فیلتر نتایج به سال:
Autoregressive integrated moving average (ARIMA) is one of the popular linear models in time series forecasting during the past three decades. Recent research activities in forecasting with arti/cial neural networks (ANNs) suggest that ANNs can be a promising alternative to the traditional linear methods. ARIMA models and ANNs are often compared with mixed conclusions in terms of the superiorit...
In order to improve the safety of train operation, a short-term wind speed forecasting method is proposed based on a linear recursive autoregressive integrated moving average (ARIMA) algorithm and a non-linear recursive generalized autoregressive conditionally heteroscedastic (GARCH) algorithm (ARIMA-GARCH). Firstly, the non-stationarity embedded in the original wind speed data is pre-processed...
Energy consumption time series consists of complex linear and non-linear patterns and are difficult to forecast. Neither autoregressive integrated moving average (ARIMA) nor artificial neural networks (ANNs) can be adequate in modeling and predicting energy consumption. The ARIMA model cannot deal with nonlinear relationships while the neural network model alone is not able to handle both linea...
Automatic forecasts of univariate time series are largely demanded in business and science. In this paper, we investigate the forecasting task for geo-referenced time series. We take into account the temporal and spatial dimension of time series to get accurate forecasting of future data. We describe two algorithms for forecasting which ARIMA models. The first is designed for seasonal data and ...
In this paper an ARIMA model is used for time-series forecast involving wind speed measurements. Results are compared with the performance of a back propagation type NNT. Results show that ARIMA model is better than NNT for short time-intervals to forecast (10 minutes, 1 hour, 2 hours and 4 hours). Data was acquired from a unit located in Southern Andalusia (Peñaflor, Sevilla), with a soft orog...
This paper investigates the ability of a new hybrid forecasting model based on empirical mode decomposition (EMD), cluster analysis and Autoregressive Integrated Moving Average (ARIMA) model to improve the accuracy of fishery landing forecasting. In the first step, the original fishery landing was decomposed into a finite number of Intrinsic Mode Functions (IMFs) and a residual by EMD. The seco...
5 This paper introduces Singular Spectrum Analysis (SSA) for tourism demand forecasting 6 via an application into total monthly U.S. Tourist arrivals from 1996-2012. The global 7 tourism industry is today, a key driver of foreign exchange inflows to an economy. Here, we 8 compare the forecasting results from SSA with those from ARIMA, Exponential Smoothing 9 (ETS) and Neural Networks (NN). We f...
Traditionally, the autoregressive integrated moving average (ARIMA) model has been one of the most widely used linear models in time series forecasting. However, the ARIMA model cannot easily capture the nonlinear patterns. Support vector machines (SVMs), a novel neural network technique, have been successfully applied in solving nonlinear regression estimation problems. Therefore, this investi...
Predicting daily occupancy is extremely important for the revenue management of individual hotels. However, daily occupancy can fluctuate widely and is difficult to forecast accurately based on existing forecasting methods. In this paper, Ensemble Empirical Mode Decomposition (EEMD)—a novel method—is introduced, and an individual hotel is chosen to test the effectiveness of EEMD in combination ...
We analyze the effects on prediction intervals of fitting ARIMA models to series with stochastic trends, when the underlying components are heteroscedastic. We show that ARIMA prediction intervals may be inadequate when only the transitory component is heteroscedastic. In this case, prediction intervals based on the unobserved component models tend to the homoscedastic intervals as the predicti...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید