نتایج جستجو برای: رنگ امیزی گراف
تعداد نتایج: 20973 فیلتر نتایج به سال:
رنگ آمیزی وقوعی یکی از انواع رنگ آمیزی گراف ها است. در گراف g مجموعه وقوع ها عبارت از مجموعه ی زوج های مرتب (v.e) است که در آن رأس v بر یال e واقع شده است. دو وقوع (v,e) و (w,f) را مجاور گویند هرگاه w=v یا e=f و یا یال vw برابر e یا f باشد. یک k-رنگ آمیزی وقوعی از گراف g را که با نمایش می دهیم، عبارت است از کوچکترین kایی که g دارای یک k- رنگ آمیزی وقوعی باشد. در این پایان نامه به مطالعه ی رنگ...
بازی رنگی گراف ها، اولین بار حدود سال ???? توسط بادلندر مطرح شد. فرض کنید یک گراف متناهی g و مجموعه x با k رنگ موجود باشد و دو بازیکن آلیس و باب این بازی را روی رأس های گراف انجام دهند. بازی با حرکت آلیس شروع می شود و هر کدام از بازیکن ها پشت سر هم یک رأس از گراف $g$ را با یک رنگ از مجموعه x رنگ می کنند، که رئوس مجاور همرنگ نباشند. بازی هنگامی پایان می پذیرد که هیچ حرکت بیشتری نتو...
یک گراف را بدون پنجه گوییم هرگاه دارای رأسی نباشد که دارای سه همسایه ی دو به دو نامجاور باشد. در نگاه اوّل، این طور به نظر می رسد که انواع بسیار زیادی از گراف های بدون پنجه وجود دارد. به عنوان مثال، گراف های یالی، گراف بیست وجهی، مکمل گراف های منشوروار و گراف اشلفلی (یک گراف بسیار متقارن زیبا با ?? رأس) را می توان به عنوان نمونه هایی از گراف های بدون پنجه نام برد. به علاوه، اگر رئوس یک گراف ر...
فرض کنیمg یک گراف همبند نابدیهی باشد. برای رأسv از گراف g، مجموعه رأس های مجاور بهv را با n(v) نشان می دهیم. فرض کنید که c? v(g) ? nیک رنگ آمیزی رأسی ازg باشد که رأس های مجاور ممکن است، رنگ های یکسانی داشته باشند. ?(v)، مجموع رنگ های رئوسn(v) است. اگر برای هر دو رأس مجاورu وv داشته باشیم ?(u)??(v)، آن گاهc را یک رنگ آمیزی جمعی ازg می نامیم. مینیمم تعداد رنگ های مورد نیاز در یک رنگ آمیزی جمعی از...
در این پایان نامه موضوع گراف های مسطح فازی و رنگ آمیزی گراف های مسطح فازی مورد مطالعه قرار گرفته است. در این رابطه برخی مباحث مربوط به گراف های مسطح قطعی به گراف های مسطح فازی تعمیم داده شده است. فصل اول، مربوط به تاریخچه ی موضوع و بیان تعاریف اساسی گراف های فازی می باشد. در فصل دوم به تعریف گراف مسطح فازی و دوگان آن، گراف چندگانه فازی، گراف مسطح فازی- 7 و دوگان آن و تعمیم قضایای مربوط به فرمول...
چکیده ی فارسی یک رنگ آمیزی رأسی سره از گراف g را یک bرنگ آمیزی از گراف g می نامند هرگاه هر کلاس رنگی دارای رأسی باشد که این رأس در تمام کلاس های رنگی دیگر همسایه داشته باشد. هر رنگ آمیزی از گراف g با chi(g) رنگ، یک bرنگ آمیزی از g است. به بزرگ ترین عدد طبیعی k که یک bرنگ آمیزی از گراف g با k رنگ وجود داشته باشد، عدد b رنگی گرافg می گویند و آن را با phi (g) نمایش می دهند. گ...
مفهوم عدد همبندی رنگین کمانی یکی از مفاهیم اساسی در نظریه ی گراف است که به علت کاربردهای زیاد آن در انتقال اطلاعات مورد توجه قرار گرفته است. یک رنگ آمیزی همبند رنگین کمانی از یک گراف g، یک رنگ آمیزی یالی نه لزوما معتبر از g است، به طوری که هر جفت از رئوس g توسط حداقل یک مسیر که یال های آن رنگ های متمایز از هم دارند به هم متصل اند و عدد همبندی رنگین کمانی g، کمترین تعداد رنگ مورد نیاز برای چنین...
یکی از مباحث مهم در نظریه گراف، رنگ آمیزی است. رنگ آمیزی راًسی برای یک گراف، تابعی است که به هر راًس گراف یک عدد صحیح نامنفی اختصاص می دهد. در این پایان نامه، نوعی از رنگ آمیزی راًسی به نام رنگ آمیزی هامیلتونی را برای گراف های همبند مورد مطالعه قرار می دهیم. در تعریف این رنگ آمیزی، طولانی ترین مسیر میان هر دو راًس دلخواه در گراف مورد توجه قرار می گیرد. پارامتر مهم این رنگ آمیزی، عدد رنگی هامیلت...
در یک گراف g با رنگ آمیزی کلی f،c(u) مجموعه رنگ های اختصاص داده شده به راس u و یال های واقع بر راس u است، رنگ آمیزی کلی f را یک رنگ آمیزی کلی متمایزکننده ی راس مجاور از g نامیم هرگاه برای هر جفت از رئوس مجاور cf (u) ̸= cf (v) ،v و u .مینیمم تعداد رنگ های لازم برای یک رنگ آمیزی کلی متمایزکننده ی راس مجاور از g را عدد رنگی کلی متمایزکننده ی راس مجاور g می...
هر رنگ آمیزی واقعی یک گراف رنگ آمیزی دینامیکی آن گراف می باشد اگر همسایه های هر رأس از درجه حداقل 2 در آن در حداقل دو کلاس رنگ قرار گیرند. در این رساله به بررسی عدد رنگی دینامیکی یک گراف و مقایسه آن با عدد رنگی واقعی خواهیم پرداخت. همچنین برخی مسائل کلاسیک در رنگ آمیزی واقعی مانند الگوریتم حریص، کران مینیمم درجه گرافهای رنگ بحرانی رأسی و... در رنگ آمیزی دینامیکی بیان خواهد شد. مجموعه و عدد تعیی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید